
Dynamic Programming

By
Prof. Shaik Naseera
Department of CSE

JNTUA College of Engg., Kalikiri

1

Objectives

- Knapsack Problem
- Reliability Design
- Matrix Chain Multiplication
- Optimal Binary Search Tree
- Previous Gate Questions

2

• Dynamic Programming is an algorithm design
method that can be used when the solution to
a problem can be viewed as the result of a
sequence of decisions.

3

Principle of optimality

• An optimal sequence of decisions has the
property that whatever the initial state and
decisions are, the remaining decisions must
constitute an optimal decision sequence with
regard to the state resulting from the first
decision.

4

0/1 knapsack problem

• Consider a knapsack instance n=3, (p1,p2,p3)=(1,2,5),
(w1,w2,w3)=(2,3,4) and m=6.

• S0={(0,0)} ; ={(1,2)}
• S1={(0,0),(1,2)} ={(2,3),(3,5)}
• S2={(0,0),(1,2),(2,3),(3,5)} ={(5,4),(6,6),(7,7),(8,9)}

• S3={(0,0),(1,2),(2,3),(5,4),(6,6),(7,7),(8,9)}
• (3,5) is eliminated as a part of merge-purge

rule

5

Merge-purge Rule

• Note that if Si+1 contains two pairs Let (Pi,Wi)
and (Pj,Wj) such that
if (Pi ≤Pj) and Wi≥Wj then (Pi, Wi) can be
discarded (purged).

6

Optimal solution

• M=6
• (6,6) is the tuple to meet the maximum capacity

of the bag.
• (6,6)S2 therefore x3=1
• (6,6) is obtained from (1,2)
• (1,2) S1 therefore x2=0
• (1,2) S0 therefore x1=1
• The optimal solution is (1, 0, 1) and the profit is 6

7

• N=4, m=25 (p1,p2,p3,p4)=(2,5,8,1)
(w1,w2,w3,w4)=(10,15,6,9) obtain the optimal
solution using dynamic programming

8

9

Reliability Design

10

• The problem is to design a system that is
composed of several devices connected in series.

• Let ri be the reliability of Di . The reliability of the
entire system is ∏ri.

• Even if the individual devices are very reliable,
the reliability of the entire system may not be
very good.

• Ex:- n=10, ri =0.99 then ∏ri =0.904.
• Hence it is desirable to duplicate the devices.

11

• Multiple copies of the same device type are
connected in parallel through the use of
switching circuits.

• The switching circuits determine which devices in
any given group are functioning properly and
make use of one such device at each stage.

12

• If stage i contains mi copies of device Di then the
probability that all mi have a malfunction is
(1-ri)mi.

• The reliability of stage i becomes (1-(1-ri)mi).
• Let Φi (mi) be the reliability of the stage i. Then

Φi (mi)=(1-(1-ri)mi).
• ∏Φi (mi) where 1 ≤ i ≤ n be the reliability of the

entire system.
• The problem is to use device duplication to

maximize the reliability.
• The maximization is to be carried out under cost

constraint.

13

• Let ci be the cost of device i.
• Let c be the cost of entire system (budget).
• The problem is to

Maximize ∏ 1≤ i ≤ n Φi (mi)
Subject to Σ cimi ≤ c , 1 ≤ i ≤ n, mi≥1.
• The number of devices that can be duplicated

at each stage is

ui=

14

Q. Design a three stage system with device types
D1, D2 and D3. The costs are $30, $15 and $20
respectively. Reliability is 0.9, 0.8 and 0.5. The
total cost of the system must not be more than
c=$105.

Ans.
u1=

u2=

u3=

ui=

The Maximum number of units that each stage contain is ui With respect to the allowed budget 15

System Design:

1-(1-0.8)2=0.96*0.9=0.864
1-(1-0.8)3=0.992*0.9=0.8928

1-(1-0.5)2=0.75*0.72=0.54
1-(1-0.5)3=0.875*0.72=0.63

C=$105, c1=$30, c2=$15, c3=$20

16

Matrix Chain Multiplication

17

Problem Definition

• Input: a chain of matrices to be multiplied

• Output: a parenthesizing of the chain

• Objective: minimize number of steps

needed for the multiplication

18

Matrix Chain Multiplication

• Given : a chain of matrices {A1,A2,…,An}.
• Once all pairs of matrices are parenthesized, they can

be multiplied by using the standard algorithm as a sub-
routine.

• A product of matrices is fully parenthesized if it is either
a single matrix or the product of two fully parenthesized
matrix products, surrounded by parentheses. [Note: since
matrix multiplication is associative, all parenthesizations yield the
same product.]

19

• Matrix multiplication is associative ,
e.g.,

so parenthenization does not
change result .

• To compute the number of scalar
multiplications necessary, we must know:

• Algorithm to multiply two matrices
• Matrix dimensions

20

Matrix Chain Multiplication
cont.

• For example, if the chain of matrices is {A, B, C,
D}, the product A, B, C, D can be fully
parenthesized in 5 distinct ways:

(A (B (C D))),
(A ((B C) D)),
((A B) (C D)),
((A (B C)) D),
(((A B) C) D).

• The way the chain is parenthesized can have a
dramatic impact on the cost of evaluating the
product.

2ncn/n+1, substitute n=n-1
=> 2(n-1)cn-1/n

Let n=4, 6c3/4 = (6*5*4/3*2*1)/4 = 5 possible
parenthesization

21

Matrix Chain Multiplication Optimal
Parenthesization

• Example: A[30][35], B[35][15], C[15][5]
minimum of A*B*C

A*(B*C) = 30*35*5 + 35*15*5 = 7,585
(A*B)*C = 30*35*15 + 30*15*5 = 18,000

• How to optimize:
– Brute force – look at every possible way to

parenthesize : Ω(4n/n3/2)
– Dynamic programming – time complexity of Ω(n3) and

space complexity of Θ(n2).

22

•The time to compute C is dominated by the

number of scalar multiplications.

•To illustrate the different costs incurred by

different paranthesization of a matrix product.
Example: Consider three matrices A10100, B1005, and C550 There are 2 ways to

parenthesize

((AB)C) = D105 · C550

AB 10·100·5=5,000 scalar multiplications

DC 10·5·50 =2,500 scalar multiplications

(A(BC)) = A10100 · E10050

BC 100·5·50=25,000 scalar multiplications

AE 10·100·50 =50,000 scalar multiplications

Total: 75,000

Total:
7,500

23

� Example: consider the chain A1, A2, A3, A4 of 4
matrices

◦ Let us compute the product A1A2A3A4

• 5 different orderings = 5 different parenthesizations
1. (A1(A2(A3A4)))
2. (A1((A2A3)A4))
3. ((A1A2)(A3A4))
4. ((A1(A2A3))A4)
5. (((A1A2)A3)A4)

24

Algorithm..
Matrix-Multiply(A,B)

1.If columns[A]!=rows[B]

2. then error “incomplete dimensions”

3. else for i 1 to rows[A]

do for j 1 to columns[B]

do C[i,j] 0

for k 1 to columns[A]

4.

5.

6.

7. Do C[i,j]=C[i,j]+A[i,k]*B[k,j]

8. Return C

m*p , p*q matrices produce m*q
matrix

25

•The time to compute C is dominated by the

number of scalar multiplications.

•To illustrate the different costs incurred by

different paranthesization of a matrix product.
Example: Consider three matrices A10100, B1005, and C550 There are 2 ways to

parenthesize

((AB)C) = D105 · C550

AB 10·100·5=5,000 scalar multiplications

DC 10·5·50 =2,500 scalar multiplications

(A(BC)) = A10100 · E10050

BC 100·5·50=25,000 scalar multiplications

AE 10·100·50 =50,000 scalar multiplications

Total: 75,000

Total:
7,500

26

• Matrix-chain multiplication problem

 Given a chain A1, A2, …, An of n
matrices, where for i=1, 2, …, n, matrix

Ai has dimension p i-1p i

 Parenthesize the product A1A2…An such
that the total number of scalar

multiplications is minimized

27

•Before solving by Dynamic programming

exhaustively check all paranthesizations.

•P(n) : paranthesization of a sequence of

n matrices

Counting the Number of Parenthesizations

28

•We obtain the recurrence

if n 1

if n 2 P(k)p(n k)
k1

P(n) n1
 1

Parenthesize P(k) and P(n-k) recursively

(Note: 2nCn/n+1 ways of parenthesizing.)

29

1.The Structure of an Optimal Parenthesization

Step 1: Characterize the structure of an optimal solution
•Ai..j : matrix that results from evaluating the product

Ai A i+1 A i+2 ... Aj

•An optimal parenthesization of the product A1A2 ... An

– Splits the product between Ak and Ak+1, for some
1≤k<n

(A1A2A3 ... Ak) · (Ak+1Ak+2 ... An)

– i.e., first compute A1..k and Ak+1..n and then multiply
these two

•The cost of this optimal parenthesization :
(Cost of computing A1..k + Cost of computing
Ak+1..n + Cost of multiplying A1..k · Ak+1..n)

30

Optimal (sub)structure:
• Suppose that optimal parenthesization of Ai,j splits between Ak and
Ak+1.

• Then, parenthesizations of Ai,k andAk+1,j must be optimal, too

(otherwise, enhance overall solution — subproblems are
independent!).

Construct optimal solution:
1. split into subproblems (using optimal split!),

2. parenthesize them optimally,

3. combine optimal subproblem solutions.

31

Example
Let us consider three matrices namely A1, A2 and A3 each of dimensions (2 * 3) , (3 * 4)
and (4 * 2)
For example the matrices be parenthasized in the following manner.
((A1*A2)*A3)

((A1 * A2) * A3)
2 * 3 3 * 4 4 * 2 = 0 (since A3 is single matrix, the value is 0)

2 * 3* 4 = 24

2 * 4 * 2 = 16 => p0, p2,p3
Hence the common formula can be derived from the above example as follows.
Let us consider the cost of the matrix as C[i,j] and the dimensions as 'P'. Now for the above
example the dimensions are termed as 2 * 3 3 * 4 4 * 2

p0 p1 p1 p2 p2 p3

The cost matrix is taken as C[1,2] + C[3,3] + (p0 * p2 * p3) , where we consider
C [1 , 2] + C [3 , 3] + (p0 * p2 * p3)

i k k+1 j pi-1 pk pj

C [i , j] = min { c [i , k] + c [k + 1, j] + pi-1 * pk * pj }
i ≤ k ≤ j 32

2. Recursively def. value of opt. solution
•Let m[i, j] denote minimum number of scalar multiplications needed to

compute Ai;j = Ai*Ai+1….Aj (full problem: m[1, n]).

Recursive definition of m[i, j]:

• if i = j, then

m[i, j] = m[i, i] = 0 (Ai,i = Ai, no mult. needed).

P is the dimension of the matrix 33

•We also keep track of optimal splits:

34

4.Computing the Optimal Cost

35

Computing the Optimal Cost(cont..)

36

Algorithm for Computing the
Optimal Costs

37

Example:

A1 3035 p0 p1

A2 3515 p1 p2

A3 155 p2 p3

A4 510 p3 p4

A5

A6

1020
2025

 p4 p5

 p5 p6
38

m[2,5]=
min{
m[2,2]+m[3,5]+p1p2p5=0+2500+351520
=13000,
m[2,3]+m[4,5]+p1p3p5=2625+1000+355
20=7125,
m[2,4]+m[5,5]+p1p4p5=4375+0+351020
=11374
}
=7125

C [i , j] = min { c [i , k] + c [k + 1, j] + pi-1 * pk * pj }
i ≤ k ≤ j

Sample Calculation

39

A1 A2 A3 A4 A5 A6
(A1 A2 A3) A4 A5 A6
(A1 (A2 A3)) ((A4 A5) A6)

40

The m and s table computed by MATRIX-
CHAIN-ORDER for n = 6

A1 A2 A3 A4 A5 A6
(A1 A2 A3) A4 A5 A6
(A1 (A2 A3)) ((A4 A5) A6)

41

• Binary Search Tree : The values present in the
left subtree are less than root value and the
values present in the right subtree are greater
than the root value.

• For a given set of identifies, we can construct
more than one binary search tree.

• The binary search trees exhibit different
performance characteristics.

Optimal Binary Search Trees (OBST)

42

For successful search cases

(1+2+2+3+4)/5=12/5 (1+2+2+3+3)/5=11/5
43

• In general situation, we expect different identifiers to
be searched for with different frequencies
(probabilities).

• There may be unsuccessful search cases also.
• Let {a1,a2 …,an} with a1<a2<…<an.
• Let p(i) be the probability of with which each ai is

searched.
• Then, Σp(i) where 1 ≤ i ≤ n is the probability of

successful search.
• Let q(i) be the probability that the identifier x is

searched such that ai < x < ai+1.
• Then, Σq(i) where 0 ≤ i ≤ n is the probability of

unsuccessful search.
• Σp(i) + Σq(i) = 1

1 ≤ i ≤ n 0 ≤ i ≤ n

44

• To obtain a cost function for binary search
tree, it is useful to add a fictitious node in
place of empty sub tree in the search tree.

45

• Successful search terminate at level l,
unsuccessful search terminates at node level-1.

• The formula for the expected cost of the
binary search tree is
Σp(i)*level(ai) + Σq(i) * (level(Ei)-1)
1 ≤ i ≤ n 0 ≤ i ≤ n

46

• equal probability
• (a1,a2,a3)=(do, if, while) P(i)=q(i)=1/7

Possible binary search trees

Cost(tree a)=15/7 cost(tree b)=13/7

=(1+2+3)/7 +(1+2+3+3)/7
=15/7

=((1+2+2)+(2+2+2+2))/7
47

• Cost(tree c)=15/7 cost(tree d)=15/7

48

Cost(tree e)=15/7

49

• Un-equal probability (a1,a2,a3)=(do, if, while)
• P(1)=0.5, P(2)=0.1, P(3)=0.05
• q(0)=0.15, q(1)=0.1, q(2)=0.05, q(3)=0.05

Possible binary search trees

Cost(tree a)=2.65 cost(tree b)=1.9 50

• Cost(tree c)=1.5 cost(tree d)=2.05

51

Cost(tree e)=1.6

52

• An optimal binary search tree with root ak.
• Let w(i, j) = q(i)+Σ(q(l)+p(l)), i+1 ≤ l ≤ j.
• Expected cost = p(k)+cost(l)+cost(r)+w(0,k-1)+w(k,n)

• C(i, j)=min{cost(i, k-1)+cost(k, j)+p(k)+w(i,k-1)+w(k,n)} is minimum

OBST using Dynamic Programming

w(i, j) is for external nodes 53

• c(i, j)=min{c(i, k-1)+c(k, j)}+w(i, j)}
i < k ≤ j

• w(i, j)=p(j)+q(j)+w(i, j-1)
• r(i, j) = k that minimizes c(i, j)

• w(i, i) = q(i)
• c=(i, i)=0
• r(i, i) =0

54

w00=2
c00=0
r00=0

w11=3
c11=0
r11=0

w22=1
c22=0
r22=0

w33=1
c33=0
r33=0

w44=1
c44=0
r44=0

w01=8
c01=8
r01=1

w12=7
c12=7
r12=2

w23=3
c23=3
r23=3

W34=3
C34=3
r34=4

w02=12
c02=19
r02=1

w13=9
c13=12
r13=2

w24=5
c24=8
r24=3

w03=14
c03=25
r03=2

w14=11
c14=19
r14=2

w04=16
c04=32
r04=2

Construct OBST for n=4, (a1,a2,a3,a4)=(do,if,int,while) p(1:4)=(3,3,1,1) and
q(0:4)=(2,3,1,1,1).

55

OBST for given example

56

• obst.docx

OBST Algorithm

57

Previous Gate Questions

58

59

1.

60

61

62

2.

((A1A2)A3)A4 = ((A1(A2A3))A4) = (A1A2)(A3A4) = A1((A2A3)A4) = A1(A2(A3A4)).

63

3.

Hint:
M1 X M2 = p*q*r
(M1 X M2)XM3=p*r*s
((M1 X M2)XM3)XM4=p*s*t

But we get minimum comparisons for ((M1 X (M2 X M3)) X M4).

64

4.

65

5.

Thank You

66

