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Objectives

- Knapsack Problem
- Reliability Design
- Matrix Chain Multiplication
- Optimal Binary Search Tree
- Previous Gate Questions
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• Dynamic Programming is an algorithm design 
method that can be used when the solution to 
a problem can be viewed as the result of a 
sequence of decisions.
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Principle of optimality

• An optimal sequence of decisions has the 
property that whatever the initial state and 
decisions are, the remaining decisions must 
constitute an optimal decision sequence with 
regard to the state resulting from the first 
decision. 
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0/1 knapsack problem

• Consider a knapsack instance n=3, (p1,p2,p3)=(1,2,5), 
(w1,w2,w3)=(2,3,4) and m=6.

• S0={(0,0)} ;           ={(1,2)}
• S1={(0,0),(1,2)}         ={(2,3),(3,5)}
• S2={(0,0),(1,2),(2,3),(3,5)}      ={(5,4),(6,6),(7,7),(8,9)}

• S3={(0,0),(1,2),(2,3),(5,4),(6,6),(7,7),(8,9)}
• (3,5) is eliminated as a part of merge-purge 

rule 

5



Merge-purge Rule 

• Note that if Si+1 contains two pairs Let (Pi,Wi) 
and (Pj,Wj) such that 
if (Pi ≤Pj) and Wi≥Wj then (Pi, Wi) can be 
discarded (purged ). 

6



Optimal solution

• M=6
• (6,6) is the tuple to meet the maximum capacity 

of the bag.
• (6,6)S2 therefore  x3=1
• (6,6) is obtained from (1,2)
• (1,2) S1 therefore x2=0
• (1,2) S0 therefore x1=1
• The optimal solution is (1, 0, 1) and the profit is 6
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• N=4, m=25 (p1,p2,p3,p4)=(2,5,8,1) 
(w1,w2,w3,w4)=(10,15,6,9) obtain the optimal 
solution using dynamic programming
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Reliability Design
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• The problem is to design a system that is 
composed of several devices connected in series.

• Let ri be the reliability of Di . The reliability of the 
entire system is ∏ri.

• Even if the individual devices are very reliable, 
the reliability of the entire system may not be 
very good.

• Ex:- n=10, ri =0.99 then ∏ri =0.904.
• Hence it is desirable to duplicate the devices.
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• Multiple copies of the same device type are 
connected in parallel through the use of 
switching circuits. 

• The switching circuits determine which devices in 
any given group are functioning properly and 
make use of one such device at each stage.
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• If stage i contains mi copies of device Di then the 
probability that all mi have a malfunction is        
(1-ri)mi. 

• The reliability of stage i becomes (1-(1-ri)mi). 
• Let Φi (mi) be the reliability of the stage i. Then 

Φi (mi)=(1-(1-ri)mi). 
• ∏Φi (mi) where  1 ≤ i ≤ n be the reliability of the 

entire system. 
• The problem is to use device duplication to 

maximize the reliability. 
• The maximization is to be carried out under cost 

constraint.
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• Let ci be the cost of device i. 
• Let c be the cost of entire system (budget).
• The problem is to 

Maximize ∏ 1≤ i ≤ n Φi (mi) 
Subject to Σ cimi ≤ c , 1 ≤ i ≤ n, mi≥1.
• The number of devices that can be duplicated 

at each stage is

ui=
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Q. Design a three stage system with device types 
D1, D2 and D3. The costs are $30, $15 and $20 
respectively. Reliability is 0.9, 0.8 and 0.5. The 
total cost of the system must not be more than 
c=$105.

Ans. 
u1= 

u2=

u3=  

ui=  

The Maximum number of units that each stage contain is ui With respect to the allowed budget 15



System Design:

1-(1-0.8)2=0.96*0.9=0.864
1-(1-0.8)3=0.992*0.9=0.8928

1-(1-0.5)2=0.75*0.72=0.54
1-(1-0.5)3=0.875*0.72=0.63

C=$105, c1=$30, c2=$15, c3=$20
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Matrix Chain Multiplication
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Problem Definition

• Input: a chain of matrices to be multiplied

• Output: a parenthesizing of the chain

• Objective: minimize number of steps  

needed for the multiplication
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Matrix Chain Multiplication

• Given : a chain of matrices {A1,A2,…,An}.
• Once all pairs of matrices are parenthesized, they can  

be multiplied by using the standard algorithm as a sub-
routine.

• A product of matrices is fully parenthesized if it is either  
a single matrix or the product of two fully parenthesized  
matrix products, surrounded by parentheses. [Note: since  
matrix multiplication is associative, all parenthesizations yield the  
same product.]
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• Matrix multiplication is associative ,  
e.g.,

so parenthenization does not  
change result .

• To compute the number of scalar  
multiplications necessary, we must know:

• Algorithm to multiply two matrices
• Matrix dimensions
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Matrix Chain Multiplication
cont.

• For example, if the chain of matrices is {A, B, C,  
D}, the product A, B, C, D can be fully  
parenthesized in 5 distinct ways:

(A ( B ( C D ))),
(A (( B C ) D )),
((A B ) ( C D )),
((A ( B C )) D),
((( A B ) C ) D ).

• The way the chain is parenthesized can have a  
dramatic impact on the cost of evaluating the  
product.

2ncn/n+1, substitute n=n-1
=> 2(n-1)cn-1/n

Let n=4,  6c3/4 = (6*5*4/3*2*1)/4 = 5 possible
parenthesization
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Matrix Chain Multiplication Optimal  
Parenthesization

• Example: A[30][35], B[35][15], C[15][5]
minimum of A*B*C

A*(B*C) = 30*35*5 + 35*15*5 = 7,585  
(A*B)*C = 30*35*15 + 30*15*5 = 18,000

• How to optimize:
– Brute force – look at every possible way to  

parenthesize : Ω(4n/n3/2)
– Dynamic programming – time complexity of Ω(n3) and  

space complexity of Θ(n2).
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•The time to compute C is dominated by the  

number of scalar multiplications.

•To illustrate the different costs incurred by  

different paranthesization of a matrix product.
Example: Consider three matrices A10100, B1005, and C550 There are 2 ways to

parenthesize

((AB)C) = D105 · C550

AB  10·100·5=5,000 scalar multiplications

DC  10·5·50 =2,500 scalar multiplications

(A(BC)) = A10100 · E10050

BC  100·5·50=25,000 scalar multiplications

AE  10·100·50 =50,000 scalar multiplications

Total: 75,000

Total:  
7,500
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� Example: consider the chain A1, A2, A3, A4 of 4  
matrices

◦ Let us compute the product A1A2A3A4

• 5 different orderings = 5 different parenthesizations
1. (A1(A2(A3A4)))
2. (A1((A2A3)A4))
3. ((A1A2)(A3A4))
4. ((A1(A2A3))A4)
5. (((A1A2)A3)A4)
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Algorithm..
Matrix-Multiply(A,B)  

1.If columns[A]!=rows[B]

2. then error “incomplete dimensions”

3. else for i 1 to rows[A]

do for j 1 to columns[B]

do C[i,j] 0

for k 1 to columns[A]

4.

5.

6.

7. Do C[i,j]=C[i,j]+A[i,k]*B[k,j]

8. Return C

m*p ,  p*q matrices produce m*q 
matrix
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•The time to compute C is dominated by the  

number of scalar multiplications.

•To illustrate the different costs incurred by  

different paranthesization of a matrix product.
Example: Consider three matrices A10100, B1005, and C550 There are 2 ways to

parenthesize

((AB)C) = D105 · C550

AB  10·100·5=5,000 scalar multiplications

DC  10·5·50 =2,500 scalar multiplications

(A(BC)) = A10100 · E10050

BC  100·5·50=25,000 scalar multiplications

AE  10·100·50 =50,000 scalar multiplications

Total: 75,000

Total:  
7,500
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• Matrix-chain multiplication problem

 Given a chain A1, A2, …, An of n
matrices, where for i=1, 2, …, n, matrix  

Ai has dimension p i-1p i

 Parenthesize the product A1A2…An such
that the total number of scalar  

multiplications is minimized
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•Before solving by Dynamic programming  

exhaustively check all paranthesizations.

•P(n) : paranthesization of a sequence of  

n matrices

Counting the Number of Parenthesizations

28



•We obtain the recurrence

if n 1

if n  2 P(k )p(n  k )
k1

P( n) n1
 1

Parenthesize P(k) and P(n-k) recursively

(Note: 2nCn/n+1 ways of parenthesizing.)
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1.The Structure of an Optimal Parenthesization

Step 1: Characterize the structure of an optimal solution
•Ai..j : matrix that results from evaluating the product 

Ai A i+1 A i+2 ... Aj

•An optimal parenthesization of the product A1A2 ... An

– Splits the product between Ak and Ak+1, for some
1≤k<n

(A1A2A3 ... Ak) · (Ak+1Ak+2 ... An)

– i.e., first compute A1..k and Ak+1..n and then multiply 
these two

•The cost of this optimal parenthesization :
(Cost of computing A1..k +  Cost of computing 
Ak+1..n + Cost of multiplying A1..k · Ak+1..n)

30



Optimal (sub)structure:
• Suppose that optimal parenthesization of Ai,j splits between Ak and
Ak+1.

• Then, parenthesizations of Ai,k andAk+1,j must be optimal, too

(otherwise, enhance overall solution — subproblems are
independent!).

Construct optimal solution:
1. split into subproblems (using optimal split!),

2. parenthesize them optimally,

3. combine optimal subproblem solutions.
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Example
Let us consider three matrices namely A1, A2 and A3 each of dimensions ( 2 * 3 ) , ( 3 * 4 ) 
and ( 4 * 2 )
For example the matrices be parenthasized in the following manner.
((A1*A2)*A3)

( ( A1 * A2 ) * A3 )
2 * 3 3 * 4 4 * 2 = 0 (since A3 is single matrix, the value is 0)

2 * 3* 4 = 24

2 * 4 * 2 = 16 => p0, p2,p3
Hence the common formula can be derived from the above example as follows.
Let us consider the cost of the matrix as C[i,j] and the dimensions as 'P'. Now for the above 
example the dimensions are termed as 2 * 3 3 * 4 4 * 2

p0 p1 p1 p2 p2 p3

The cost matrix is taken as C[1,2] + C[3,3] + (p0 * p2 * p3) , where we consider
C [ 1 , 2 ] + C [ 3 , 3 ] + ( p0 * p2 * p3 )

i k k+1 j pi-1 pk pj

C [ i , j ] = min { c [ i , k ] + c [ k + 1, j] + pi-1 * pk * pj }
i ≤ k ≤ j 32



2. Recursively def. value of opt. solution
•Let m[i, j] denote minimum number of scalar multiplications needed to  

compute Ai;j =  Ai*Ai+1….Aj (full problem: m[1, n]).

Recursive definition of m[i, j]:

• if i = j, then

m[i, j] = m[i, i] = 0  (Ai,i = Ai, no mult. needed).

P is the dimension of the matrix 33



•We also keep track of optimal splits:
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4.Computing the Optimal Cost
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Computing the Optimal Cost(cont..)
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Algorithm for Computing the  
Optimal Costs
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Example:

A1 3035  p0  p1

A2 3515  p1  p2

A3 155  p2  p3

A4 510  p3  p4

A5

A6

1020
2025

 p4  p5

 p5  p6
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m[2,5]=
min{
m[2,2]+m[3,5]+p1p2p5=0+2500+351520
=13000,
m[2,3]+m[4,5]+p1p3p5=2625+1000+355
20=7125,  
m[2,4]+m[5,5]+p1p4p5=4375+0+351020
=11374
}
=7125

C [ i , j ] = min { c [ i , k ] + c [ k + 1, j] + pi-1 * pk * pj }
i ≤ k ≤ j

Sample Calculation
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A1   A2  A3  A4   A5  A6
(A1   A2  A3)  A4   A5  A6
(A1   (A2  A3))  ((A4   A5)  A6)
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The m and s table computed by MATRIX-
CHAIN-ORDER for n = 6

A1   A2  A3  A4   A5  A6
(A1   A2  A3)  A4   A5  A6
(A1   (A2  A3))  ((A4   A5)  A6)
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• Binary Search Tree : The values present in the 
left subtree are less than root value and the 
values present in the right subtree are greater 
than the root value.

• For a given set of identifies, we can construct 
more than one binary search tree.

• The binary search trees exhibit different 
performance characteristics.

Optimal Binary Search Trees (OBST)
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For successful search cases

(1+2+2+3+4)/5=12/5 (1+2+2+3+3)/5=11/5
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• In general situation, we expect different identifiers to 
be searched for with different frequencies 
(probabilities).

• There may be unsuccessful search cases also.
• Let {a1,a2 …,an} with a1<a2<…<an.
• Let p(i) be the probability of with which each ai is 

searched.
• Then, Σp(i) where 1 ≤ i ≤ n is the probability of 

successful search.
• Let q(i) be the probability that the identifier x is 

searched such that ai < x < ai+1. 
• Then, Σq(i) where 0 ≤ i ≤ n is the probability of 

unsuccessful search.
• Σp(i)      + Σq(i) = 1 

1 ≤ i ≤ n 0 ≤ i ≤ n
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• To obtain a cost function for binary search 
tree, it is useful to add a fictitious node in 
place of empty sub tree in the search tree.
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• Successful search terminate at level l, 
unsuccessful search terminates at node level-1.

• The formula for the expected cost of the 
binary search tree is 
Σp(i)*level(ai)      + Σq(i) * (level(Ei)-1)
1 ≤ i ≤ n 0 ≤ i ≤ n
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• equal probability
• (a1,a2,a3)=(do, if, while)      P(i)=q(i)=1/7

Possible binary search trees

Cost(tree a)=15/7 cost(tree b)=13/7

=(1+2+3)/7 +(1+2+3+3)/7
=15/7

=((1+2+2)+(2+2+2+2))/7
47



• Cost(tree c)=15/7 cost(tree d)=15/7
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Cost(tree e)=15/7
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• Un-equal probability (a1,a2,a3)=(do, if, while)  
• P(1)=0.5, P(2)=0.1, P(3)=0.05
• q(0)=0.15, q(1)=0.1, q(2)=0.05, q(3)=0.05

Possible binary search trees

Cost(tree a)=2.65 cost(tree b)=1.9 50



• Cost(tree c)=1.5 cost(tree d)=2.05
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Cost(tree e)=1.6
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• An optimal binary search tree with root ak.
• Let w(i, j) = q(i)+Σ(q(l)+p(l)), i+1 ≤ l ≤ j.
• Expected cost = p(k)+cost(l)+cost(r)+w(0,k-1)+w(k,n)

• C(i, j)=min{cost(i, k-1)+cost(k, j)+p(k)+w(i,k-1)+w(k,n)} is minimum

OBST using Dynamic Programming

w(i, j) is for external nodes 53



• c(i, j)=min{c(i, k-1)+c(k, j)}+w(i, j)}
i < k ≤ j

• w(i, j)=p(j)+q(j)+w(i, j-1)
• r(i, j) = k that minimizes c(i, j)

• w(i, i) = q(i)
• c=(i, i)=0
• r(i, i) =0
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w00=2
c00=0
r00=0

w11=3
c11=0
r11=0

w22=1
c22=0
r22=0

w33=1
c33=0
r33=0

w44=1
c44=0
r44=0

w01=8
c01=8
r01=1

w12=7
c12=7
r12=2

w23=3
c23=3
r23=3

W34=3
C34=3
r34=4

w02=12
c02=19
r02=1

w13=9
c13=12
r13=2

w24=5
c24=8
r24=3

w03=14
c03=25
r03=2

w14=11
c14=19
r14=2

w04=16
c04=32
r04=2

Construct OBST for n=4, (a1,a2,a3,a4)=(do,if,int,while) p(1:4)=(3,3,1,1) and 
q(0:4)=(2,3,1,1,1).
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OBST for given example
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• obst.docx

OBST Algorithm
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Previous Gate Questions
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2.



((A1A2)A3)A4 = ((A1(A2A3))A4) = (A1A2)(A3A4) = A1((A2A3)A4) = A1(A2(A3A4)).
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Hint:
M1 X M2  = p*q*r 
(M1 X M2)XM3=p*r*s
((M1 X M2)XM3)XM4=p*s*t

But we get minimum comparisons for ((M1 X (M2 X M3)) X M4).
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Thank You
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