Semantic Analysis

C.Naga Raju

B.Tech(CSE),M.Tech(CSE),PhD(CSE),MIEEE,MCSI,MISTE
Professor

Department of CSE
YSR Engineering College of YVU
Proddatur



e Introduction to Semantic Analysis

e Syntax Directed Definitions(SDD)

e Evaluation Orders of SDD’s

e Syntax Directed Translation(SDT)

e Applications of Syntax Directed Translation
e GATE Problems and solutions



Semantic analyzer

e [t uses syntax tree and symbol table to check whether the
given program is semantically consistent with language
definition or not.

e [t gathers type information and stores it in either syntax tree
or symbol table.

 Functions of Semantic Analysis:

 1)Type Checking 2)Label Checking 3)Flow Control Check
Semantic errors

e Type mismatch

e Undeclared variables

e Reserved identifier misuse



Program Text

5 + (7 * x)

Lexical
Analyzer

num

+ ( num * id )

Token Stream

Grammar:
E—id
E— num
E>E+E
E>E*EE
—>(E)

syntax ‘
error valid

E Parse Tree

I I
num(7) id(x)




Grammar:
E—id
E— num
E—>E+E
E>E*EE
— (E)

syntax
error

Semantic Error

l valid

E E

|
num(5) /L\
T~

num(?) id(x)

Semanti
¢ phase

Num(5) %

"\

Num(7)id(x)

Parse Tree

Abstract syntax tree+
Symbol Table, Type



Syntax Directed Definitions

* Syntax Tree= Parse Tree +additional information.

e Additional information may be attributes ,rules actions etc

e A SDD is a context free grammar with attributes and rules

e Attributes are associated with grammar symbols and rules with
productions

Each attribute has well-defined domain of values, such as integer,
float, character, string, and expressions..

Production Semantic Rule

E->E1+T E.code=E1l.code| |T.code]| |+’

We may also insert the semantic actions inside the grammar
E -> E1+T {print “+7}



Syntax Tree

 Syntax trees are abstract or compact representation of parse
trees.

« Syntax trees are called as Abstract Syntax Trees because-
 They do not provide every characteristic information from the
real syntax.

« For example- no rule nodes, no parenthesis etc.



Parse Trees Vs Syntax Trees-

Parse Tree

Parse tree is
representation
replacement
derivation.

a graphical
of the
process in a

Each interior node represents a
grammar rule.

Each leaf node represents a
terminal.

Parse trees provide every
characteristic information from
the real syntax.

Parse trees are comparatively
less dense than syntax trees.

Syntax Tree

Syntax tree is the compact form of a
parse tree.

Each interior node represents an
operator.
Each leaf node represents an
operand.

Syntax trees do not provide every
characteristic information from the
real syntax.

Syntax trees are comparatively more
dense than parse trees.



- "Dependency graphs" are a useful tool for determining an
evaluation order for the attribute instances in a given parse
tree.

- While an annotated parse tree shows the values of attributes
A dependency graph helps us determine how those values
can be computed.



L—En print(E.val) Annotated Parse Tree for
E—E,+T E.val:=E,.val+T.val 3*5+4 n
E-T E.val :=T.val
T—-T,*F T.val :=T,.val* F.val L
T—F T.val :=F.val T TR
F— (E) F.val:=E.val E.val=19 n
F—digit F.val :=digit.lexval / | \
E.val=15 + T.val=4
|
T.val=15 F.val=4

T.val=3 * F.val=5  digit.lexval=4
|

F.val=3 digit.lexval=5

digit.lexval=3



Dependency Graph Example

Input: 5+3"4 [
E.val=17
E.val=5 T.val=12
T T e
T.val=5 T.val=3 F.val=4
| ! T
F.val=5 F.val=3 digit.lexval=4

T T
digit.lexval=5 digit.lexval=3



Constructing the Syntax Tree for Expression of

0 Entry for c

Entry for a Entry for b

Nodes (a*b*c)




Constructing the Syntax Tree for (a*4+c)

Entry for c
FTyl—

v
Entry for a



Example: Syntax Tree

Suppose we have following code:
if (x<0) then

x=3*(y+1); else

y =y+l;



Example: Parse Tree

e
(1) o) Gen) ) (i) Gm)



Example: Parse Tree

T el ® -
@




Example: Parse Tree

TH OB ©
m@



Example: Parse Tree

(3& N




Parse Tree




Example: Parse Tree




Example: Parse Tree




Example: Parse Tree




Example: Parse Tree

@

p@

@) © G 0
Eor) () (Bor)
(Num

d



Example: Parse Tree(Else Part)




Example: Parse Tree(Else Part)




Example: Parse Tree (Else Part)




Example: Syntax Tree
O fr) @) o) @) b
O OO A o
NORo

) () @
¢ &

Chum 3



Example-2: Syntax Tree a:=b* -c+b * - c

assign

N\
7\

NN

uminus b minus

| |

C C



Example of Syntax Tree

Considering the following grammar- /NN

ESE+T|T / I\
T—->TxF|F | | |
F—(E)]|id | |

Generate the following for the string id + id x id Parse Tree
1)Parse tree
2)Syntax tree

3) Directed Acyclic Graph (DAG) / \
w Syntax Tree

Directed Acyclic Graph



Construction of Syntax tree

postfix

Construct a syntax tree for the following arithmetic expression-
(a+b)*(c—-d)+((e/f)*(a+b))
solution
(a+b)*(c—-d)+((e/f)*(a+b))
ab+*(c—-d)+((e/f)*(a+hb))
ab+*cd-+((e/f)*(a+b))
ab+*cd-+(ef/*(a+b))

ab+ * cd- + (ef/ * ab+)

ab+ * cd- + ef/ab+*

ab+cd-* + ef/ab+*

ab+cd-*ef/ab+*+




Postfix evaluation algorithm

 Start pushing the symbols of the postfix expression into the stack one by
one.

 When an operand is encountered,

« Push it into the stack.

« When an operator is encountered

« Push it into the stack.

* Pop the operator and the two symbols below it from the stack.

» Perform the operation on the two operands using the operator you have in
hand.

« Push the result back into the stack.

« Continue in the similar manner and draw the syntax tree simultaneously.



b

d

d

a+b

c-d

a+b

{a+b)

{e/f)*(a+b)

(c-d)

(e/f)*(a+b)

(a+b)*(c-d)




NN
NN N N

eeeeeeeee



Syntax directed translation

. Lt 3¥
* Grammar + Semantic rules = SDT E N
. . Eo+ L
« SDT for evaluation of expression / /\\F

|

|
«E->E+T/T {E.value =E.value + T.value } [ o)
{ E.value = T.value } ‘

«T->T*F/F {T.value = T.value * F.value
{ T.value = F.value }

e F-> NUM { F.value = num.L value }




Concrete tree and abstract tree

« E> E1+T { E.nptr =mknode(E1.nptr, '+, T.nptr); }

cEST { E.nptr = T.nptr; }
«T>T1*F {T.nptr =mknode( T1.nptr, *’, F.nptr );}
e TOF { T.nptr = F.nptr ;}

* F-=>NUM  { F.nptr = mknode(null,idname,null); }

Q+3%
N A
/¥ F*/~
L /\ 7 FrF
,r / /
4 S
o g’a« Lo

Fig: Abstract tree Fig: Concrete tree



Concrete parse tree

« E> E1+T { E.nptr =mknode(E1.nptr, '+, T.nptr); }

cEST { E.nptr = T.nptr; }
«T>T1*F {T.nptr =mknode( T1.nptr, *’, F.nptr );}
e TOF { T.nptr = F.nptr ;}

* F-=>NUM  { F.nptr = mknode(null,idname,null); }

1
f APO
Y

2+3¥4

00

Concrete parse tree



e Attribute grammar is a special form of context-free grammar

where some additional information (attributes) is appended to
one or more of its non-terminals in order to provide context-
sensitive information.

e Each attribute has well-defined domain of values, such as
integer, float, character, string, and expressions.

e Attribute grammar is a medium to provide semantics to the
context-free grammar and it can help specify the syntax and
semantics of a programming language.

e Attribute grammar (when viewed as a parse-tree) can pass

values or information among the nodes of a tree.



e E > E+ T { E.value = El.value + T.value }

e The right part of the CFG contains the semantic rules that
specify how the grammar should be interpreted.

e Here, the values of non-terminals E and T are added together
and the result is copied to the non-terminal E.

 Semantic attributes may be assigned to their values from their
domain at the time of parsing and evaluated at the time of
assignment or conditions.

e Attributes may be divided into two categories
1) synthesized attributes

2)inherited attributes.



Synthesized attributes

A Synthesized attribute is an attribute of the non-terminal on the left-hand
side of a production with semantic value

The attribute can take value only from its children (Variables in the RHS of
the production).

For e.g. let’'s say A -> BC is a production of a grammar, and A’s attribute is
dependent on B’s attributes or C’s attributes then it will be synthesized
attribute.

Ex: A->BCD

A is calculate with its children B,C,D values



Example of S-attributed SDD

* Production
1)L ->En
2)E->E1+T
)E->T
MNT->T1*F
5)T->F

6)F -> (E)
7)F -> digit

« Semantic Rules

L.val = E.val

E.val = El.val + T.val
E.val = T.val

T.val = Tl.val * F.val
T.val = F.val

F.val = E.val

F.val = digit.lexval



S-attributed SDT :

e [f an SDT uses only synthesized attributes, it is called as
S-attributed SDT.

e S-attributed SDTs are evaluated in bottom-up parsing, as
the values of the parent nodes depend upon the values of
the child nodes.

e Semantic actions are placed in rightmost place of RHS.

 Example of S-attributed SDD

Production Semantic Rules
L->En L.val = E.val
E->E1+T E.val = El.val + T.val



Parse Tree

Production Semantic Rules
YL—En L.val = E.val
2)E +-E, +T E.val=E val+ Tval
)E T E.val = T val
4) T - T,*F Tval=T valx Fval
S) T —F T.val = Fval

8)F —(E) Fval = E.val
7) F — digit F val = digit.lexval

With synthesized attributes,
we can evaluate attributes in
any bottom-up order, such as
that of a postorder traversal of
the parse tree.

Twval=3
Fval=3

digit lexval = 3

val and lexval are
~ synthesized attributes

Annotated parse tree:

3"5+4n
L.val =19
E.val= 19 "
E.val= 15 + Tval= 4
Fval= 15 Fval= 4
- Fval=5 digit lexval = 4

digit lexval = 5



Inherited attributes

 An attribute of a nonterminal on the right-hand side of a
production is called an inherited attribute.

« The attribute can take value either from its parent or from its
siblings (variables in the LHS or RHS of the production)

* For example, let’'s say A -> BC Is a production of a grammar
and C’s attribute is dependent on A’s attributes or B’s attributes

then it will be inherited attribute.



Parse Tree

Production Semantic Rules

T—FT T.inh = F.val
T val= T ' syn

Ir—"F T T',.inh = T".inh x F.val
T .syn = T,.syn

" — ¢ I .syn= T".inh

F — digit Fval = digit.lexval

An SDD with both inherited and
synthesized attributes does not
ensure any guaranteed order;
even it may not have an order at

all.

Fval=3

digitJexval = 3

Annotated parse tree:

3*5
Tval=15
Finh=3
Tsyn=15
I inh=15
' Fvei=5 T, syn=15

™

digit.Jexval = 5



L-attributed SDT:

e [f an SDT uses both synthesized attributes and inherited
attributes with a restriction that inherited attribute can
inherit values from left siblings only, it is called as L-
attributed SDT.

e Attributes in L-attributed SDTs are evaluated by depth-
first and left-to-right parsing manner.

e Semantic actions are placed anywhere in RHS.

e Example : S -> MN {S.val= M.val + N.val}



Evaluation orders for SDD’s

A dependency graph is used to determine the order of

computation of attributes

« Dependency graph

* If a semantic rule defines the value of synthesized attribute A.b Iin
terms of the value of X.c then the dependency graph has an
edge from X.cto A.b

 If a semantic rule defines the value of inherited attribute B.c in

terms of the value of X.c then the dependency graph has an

edge from X.c to B.c



Ordering the evaluation of attributes

* |If dependency graph has an edge from M to N then M must be
evaluated before the attribute of N

« Thus the only allowable orders of evaluation are those
sequence of nodes N1,N2,...,Nk such that if there Iis an edge
from Ni to Nj then i<

« Such an ordering is called a topological sort of a graph



Dependency Graph Example

Input: 5+3"4 [
E.val=17
E.val=5 T.val=12
T T e
T.val=5 T.val=3 F.val=4
| ! T
F.val=5 F.val=3 digit.lexval=4

T T
digit.lexval=5 digit.lexval=3



S Wi Ctions insiae

SDT for infix-to-prefix translation during parsing

NL —- En
2)E — {print("+').}E, + T

NE — T
4 T » T,*F {print("*); }
S) T — F

6)F — (E)
7) F — digit { print(digit.lexval); }

Parse Tree with Actions Embedded

~
.

.\\

-

b~

P R
(printC+°);} B~ T
. L
T 75,

T- digit { print(4); )
| v,
l|=‘ digit [ print(5); )

digit | y;nnc(.'l); )

4
|
E
|
+

print(‘+’); )



A Translation Scheme Example

T

N

id {print(*a”)}

id {print(“b”)} + T {print(“+”)} R
id {print(“c”)} £

The depth first traversal of the parse tree (executing the semantic actions in that order)

will produce the postfix representation of the infix expression.



Applications

* Type checking
 Postfix evaluation
* Intermediate Code generation



Declarations

- Tid; D | ¢

—+ BC | record '{' D'}
— int | float

¢ = ¢| [num]C

D
iIH
B



Type check

- E2>E1+E2 {if(El.type == E2.type) && (El.type = int)) then
E.type =int else error;}
E 2> E1==E2 {Iif((E1l.type == E2.type) && (E1.type =int/boolean)) then
E.type = boolean else error;}
E 2>(El) { E.type = El.type;}
E =2 num { E.type = Int;}

E - true { E.type = boolean;} - /R
E - false { E.type = boolean;} N e

c E-t=Wt D
/\E TS
o =‘h"E g \
Aum >



Example of postfix SDT schema

1)L->En {print(E.val);}
2) E->E1+ T E.val=El.val+T.val;}

3)E>T {E.val = T.val;}

4) T->T1*F T.al=T1l.val*F.val;}
5 T->F {T.val=F.val;}

6) F -> (E) {F.val=E.val;}

7) F -> digit {F.val=digit.lexal;}



L->En
E->E1+T

E->T
T->TL*F

T->F
F->(E)

F -> digit

{print(stack[top-1].val);

top=top-1;}
{stack[top-2].val=stack[top-2].val+stack.val;
top=top-2;}

{stack[top-2].val=stack[top-2].val+stack.val;
top=top-2;}

{stack[top-2].val=stack[top-1].val
top=top-2;}



Gate Questions




QUESTION NO 1:

* Incompatable types work with the

A. Syntax tree
B.semantic analyzer
C.Code optimizer

D.Lexical analyzer



(leneration of inte?mediate code based aon

an abstract machine model is useful in

compilers because

(a) it makes implementation of lexical
analysis and syntax analysis ensier

(b) syntax-directed translations can be
written for Intermediate code
generatlon

(¢} it enhances the portability of the front
end of the complier

() it is not possible to generate code for
real machines directly from high level
language programs

[1994 : 1 Mark]



Explanation

(a)

Generation of intermediate code based on
an abstract machine model 1s useful in
compilers because it makes implementation
of lexical analysis and syntax analysis

easier.



A linker is given object modules for a set

of programs that were compiled

separately. What information need to be

included in an object module?

(a) Object code

(b) Relocation bits

(0 Names and locations of all external
symbols defined in the object module

(d) Absolute addresses of internal symbols
[1995 : 1 Mark]



(d)
A linker 1s a computer program that takes

one or more object files generated by a
compiler and combines them into a single
executable program. The linker also takes
care of arranging the objects in a program'’s
address space. Therefore absolute addresses
of internal symbols need to be included in

an object module.



In the following grammar
X::=X&D Y/Y
Y::=Z® Y/Z
Z::=1d

Which of the following is true?

(@) ‘@ is left associative while ‘@’ is right
associative

(b) Both ‘@’ and ‘@’ is left associative

(©) ‘@’ is the right associative while ‘@’ 1s
left associative

(d) None of the above
[1997 : 1 Mark]



-

(a)
Creating syntax tree for id®&idsed :

® Y
/I\x l

’l‘ ®

LT ]
A A

l

id ad

Therefore @ is left associative.
Creating syntax tree for id®id ®id :

X
I
id Z
|
id

Therefore, ® is right associative.



Consider the translation scheme shown
below:

S—->TR

R—=+T{print(+);}R | &

T — num {print (hum.val);}

Here num is a token that represents an
integer and num.val represents the
corresponding integer value. For an input
string ‘O + 5 + 2’, this translation scheme

will print
@) 9+5+2 (b)) 95+2+
(c) 952+ + (d ++952

[2003 : 2 Marks]



3.5 (b)

For the input ‘O + 5 + 2’ the translation scheme
1s 95 + 2 + shown below:

5 [print('59) T (pr‘lnt('O')l o

2 (prant('2)) €



Question 6

» Consider the syntax directed defimition
shown below:

S —id : = E {gen (Gd.place = E.place;);:}
E—o> R, + E, {t = newtemp ():

gen (t = El- place + Ez. place;);
E.place = t}

E — id {E._place = id.place;}

Here, gen is a function that generates the
output code, and newtemp is a function
that returns the name of a new temporary
variable on every call. Assume that t’s are

the temporary variable names generated
by newtemp.

For the statement ‘X: = Y + Z°, the 3-

address code seguence generated by this
definition is
@) X=Y +7Z

b t, =Y +Z; X=1%,
(©) t1=Y;t2=t1+Z;X=t2 -
(@ t1=Y;t2=Z;t3=t1+ s X =ty

[2003 : 2 Marks])



(b)

gen() function will be used only two times
for X =Y + Z and only one temp variable is

created with newtemp().
tl=Y+Z; lel



Consider the grammar rule E — E, — E,

for arithmetic expressions. The code

generated is targeted to a CPU having a

single user register. The subtraction

operation requires the first operand to be

in the register. If E, and E, do not have

any common subexpression, in order to get

the shortest possible code

(2) E, should be evaluated first

(b) E, should be evaluated first

(c) Evaluation of E, and E, should
necessarily be interleaved

(d) Order of evaluation of E, and E, 1s of
no consequence

[2004 : 1 Mark]



(b)

To optimize the solution evaluate the
expression E,. Then we can calculate E, and
finally E, will be one of operands that will be
in register and we can perform subtraction
directly. But if we follow the opposite then we
have to make move and store operations.



Consider the grammar with the following
translation rules and E as the start symbol.
E—-E#T {Evalue=E, value™ T.value}

| °F {E.value = T.value}
T—T,&F {T.value=T, value+ F.value}
| F {T.value = F.value}
F — num {F.value = num.value}

Compute E. value for the root of the parse
tree for the expression: 2# 3 & 5# 6 & 4.
(a) 200 (b) 180
(c) 160 (d) 40

[2004 : 2 Marks]



Answer (C)

First we have to construct the parse tree.

E‘ ’ ‘Il-‘\
E., #” T, T, & F
I T & T
"l‘a I‘ = p
T L O
nmuam nuamm™ DM mum num

Then we construct the annonated parse tree
or parse tree with value at the leaf node.

E-value= 160
p- 4

E,-valuae=18 T, value=10

£z
E, value=18§ T.  value=8 &

l l \ T, value=6 F-value=4
X
T, value=2 T, value=3 F-value=35
F, ovalue=6
Fvalues2 -
“l F-value=3
|

nurn=3 nurm =313 num=35 oum=—=86 nom—a



Consider thegrammarE—-E+n |Exn|n
For a sentence n + n X n, the handles in
the right-sentential form of the reduction
are
@ nE+nand E+nxn
(b) n,E+nand E+EXxn
(c) ,n+nandn+nXn
(d nE+nand EXn

[2005 : 2 Marks]




(d)

ESE+n|/Exnln

Input Stringn+n xn

=n+nxn

= E+nxn reductionE—n

= Exn reduction E—= E+n
= E reduction E— E Xn
So the reductions aren, E+n, EXn



Question 10

Consider the following translation scheme.
S — ER

R — *E {print(**): R | ¢

E—-F+E({print(‘+); | F

F— (S) | id {print (id. value);}

Here id is a token that represents an

integer and id.value represents the

corresponding integer value. For an input

‘2% 3+ 4, this translation scheme prints

@) 2*3+4 (b) 2*+34

(©) 23 %4 + d) 234+ *
[2006 : 2 Marks]



So an input 2 * 3 + 4, it prints from the
above parse tree as 234 + *.



Question 11

Consider two binary operators ‘T° and ‘1’
with the precedence of operator |1 being
lower than that of the operator T. Operator
T is right associative while operator 1l is left
associative.” Which one of the following
represents the parse tree for expression

(71l3TaT3l2)

ed with CamSganner
[2011: 2 Markg)






Question 12

3.15 Consider the expression tree shown. Each
leaf represents a numerical value, which
can either be Oor 1. Over all possible choices
of the values at the leaves, the maximum
possible value of the expression represented
by the tree 1s

[2014 (Set-2) : 2 Marks]



3.15 Solution: (6)




Question 13

One of the purposes of using intermediate

code in compilers is to

(a) make parsing and semantic analysis
simpler.

(b) improve error recovery and error
reporting.

(¢©) increase the chances of reusing the
machine-independent code optimizer in
other compilers.

(d) improve the register allocation.

[2014 (Set-3) : 1 Mark]



(c)

Intermediate code can be optimized using
the machine-independent code optimizers.
All compilers can use same machine

independent code optimizers to optimize the
intermediate code,



THANK YOU



