
Semantic Analysis

C.Naga Raju
B.Tech(CSE),M.Tech(CSE),PhD(CSE),MIEEE,MCSI,MISTE

Professor

Department of CSE

YSR Engineering College of YVU

Proddatur

Contents

• Introduction to Semantic Analysis

• Syntax Directed Definitions(SDD)

• Evaluation Orders of SDD’s

• Syntax Directed Translation(SDT)

• Applications of Syntax Directed Translation

• GATE Problems and solutions

Semantic analyzer

• It uses syntax tree and symbol table to check whether the

given program is semantically consistent with language

definition or not.

• It gathers type information and stores it in either syntax tree

or symbol table.

• Functions of Semantic Analysis:

• 1)Type Checking 2)Label Checking 3)Flow Control Check

Semantic errors

• Type mismatch

• Undeclared variables

• Reserved identifier misuse

5 + (7 * x)

num + (num * id)

Lexical
Analyzer

Program Text

Token Stream

ParserGrammar:
E → id

E → num
E → E + E
E → E * E E
→ (E)

num(5)

E

E + E

(E)

E * E

num(7) id(x)

Parse Tree

valid
syntax
error

ParserGrammar:
E → id

E → num
E → E + E
E → E * E E
→ (E)

E

E + E

num(5) (E)

E * E

num(7) id(x)

Num(5)

Num(7)id(x)

*

Abstract syntax tree+
Symbol Table, Type

Parse Treevalid

Semantic Error

+

Semanti
c phase

syntax
error

Syntax Directed Definitions

• Syntax Tree= Parse Tree +additional information.

• Additional information may be attributes ,rules actions etc

• A SDD is a context free grammar with attributes and rules

• Attributes are associated with grammar symbols and rules with

productions

• Each attribute has well-defined domain of values, such as integer,

float, character, string, and expressions..

• Production Semantic Rule

• E->E1+T E.code=E1.code||T.code||’+’

• We may also insert the semantic actions inside the grammar

• E -> E1+T {print ‘+’}

Syntax Tree

• Syntax trees are abstract or compact representation of parse

trees.

• Syntax trees are called as Abstract Syntax Trees because-

• They do not provide every characteristic information from the

real syntax.

• For example- no rule nodes, no parenthesis etc.

Parse Trees Vs Syntax Trees-

Parse Tree Syntax Tree

Parse tree is a graphical

representation of the

replacement process in a

derivation.

Syntax tree is the compact form of a

parse tree.

Each interior node represents a

grammar rule.

Each leaf node represents a

terminal.

Each interior node represents an

operator.

Each leaf node represents an

operand.

Parse trees provide every

characteristic information from

the real syntax.

Syntax trees do not provide every

characteristic information from the

real syntax.

Parse trees are comparatively

less dense than syntax trees.

Syntax trees are comparatively more

dense than parse trees.

Constructing the Syntax Tree for Expression of

Nodes (a*b*c)

*

*

a
b

c

*

*

id id

id

Entry for a Entry for b

Entry for c

Constructing the Syntax Tree for (a*4+c)

E.nptr

E.nptr E.nptr+

E.nptr E.nptr*

id

Entry for a

*

Num 4

+

id

Entry for c

Example: Syntax Tree

Suppose we have following code:

if (x<0) then

x=3*(y+1); else

y = y+1;

Example: Parse Tree
Stmt

If Expr Then Stmt Else Stmt

Example: Parse Tree
Stmt

If Expr Then Stmt Else Stmt

Id Relop Num

Example: Parse Tree
Stmt

If Expr Then Stmt Else Stmt

Id Relop ExprNum Id =

Example: Parse Tree
Stmt

If Expr Then Stmt Else Stmt

Id Relop ExprNum Id =

Expr Expr*

Parse Tree

Stmt

If Expr Then Stmt Else Stmt

Id Relop ExprNum Id =

Expr Expr*

Expr()

Example: Parse Tree
Stmt

If Expr Then Stmt Else Stmt

Id Relop ExprNum Id =

Expr Expr*

Expr()

Example: Parse Tree
Stmt

If Expr Then Stmt Else Stmt

Id Relop ExprNum Id =

Expr Expr*

Expr()

Expr Expr+

Example: Parse Tree
Stmt

If Expr Then Stmt Else Stmt

Id Relop ExprNum Id =

Expr Expr*

Expr()

Expr Expr+

Id

Example: Parse Tree

Stmt

If Expr Then Stmt Else Stmt

Id Relop ExprNum Id =

Expr Expr*

Expr()

Expr Expr+

Id

Id Num

Example: Parse Tree(Else Part)

Stmt

If Expr Then Stmt Else Stmt

ExprId =

Example: Parse Tree(Else Part)

Stmt

If Expr Then Stmt Else Stmt

ExprId =

Expr Expr+

Example: Parse Tree (Else Part)

Stmt

If Expr Then Stmt Else Stmt

ExprId =

Expr Expr+

Id Num

Example: Syntax Tree

If Expr Then Stmt Else Stmt

x < 0

*

+Id

NumId

Id

=

Id

=

+

Id Num

Example-2: Syntax Tree a:=b* -c + b * - c

assign

a +

* *

b uminus b uminus

c c

Example of Syntax Tree

•

• Considering the following grammar-

• E → E + T | T

• T → T x F | F

• F → (E) | id

•

• Generate the following for the string id + id x id

• 1)Parse tree

• 2)Syntax tree

• 3) Directed Acyclic Graph (DAG)

Construction of Syntax tree

postfix

Construct a syntax tree for the following arithmetic expression-

(a + b) * (c – d) + ((e / f) * (a + b))

solution

(a + b) * (c – d) + ((e / f) * (a + b))

ab+ * (c – d) + ((e / f) * (a + b))

ab+ * cd- + ((e / f) * (a + b))

ab+ * cd- + (ef/ * (a + b))

ab+ * cd- + (ef/ * ab+)

ab+ * cd- + ef/ab+*

ab+cd-* + ef/ab+*

ab+cd-*ef/ab+*+

Postfix evaluation algorithm

• Start pushing the symbols of the postfix expression into the stack one by

one.

• When an operand is encountered,

• Push it into the stack.

• When an operator is encountered

• Push it into the stack.

• Pop the operator and the two symbols below it from the stack.

• Perform the operation on the two operands using the operator you have in

hand.

• Push the result back into the stack.

• Continue in the similar manner and draw the syntax tree simultaneously.

Syntax directed translation

• Grammar + Semantic rules = SDT

• SDT for evaluation of expression

• E -> E+T / T { E.value =E.value + T.value }

{ E.value = T.value }

• T -> T * F / F { T.value = T.value * F.value }

{ T.value = F.value }

• F-> NUM { F.value = num.L value }

Concrete tree and abstract tree

• E → E1+T { E.nptr =mknode(E1.nptr , ’+’ , T.nptr); }

• E →T { E.nptr = T.nptr; }

• T → T1 * F { T.nptr =mknode(T1.nptr , ‘*’ , F.nptr);}

• T→F { T.nptr = F.nptr ;}

• F-> NUM { F.nptr = mknode(null,idname,null); }

Fig: Abstract tree Fig: Concrete tree

Concrete parse tree

• E → E1+T { E.nptr =mknode(E1.nptr , ’+’ , T.nptr); }

• E →T { E.nptr = T.nptr; }

• T → T1 * F { T.nptr =mknode(T1.nptr , ‘*’ , F.nptr);}

• T→F { T.nptr = F.nptr ;}

• F-> NUM { F.nptr = mknode(null,idname,null); }

Which is

similar to

Concrete parse tree

Attribute Grammar

• Attribute grammar is a special form of context-free grammar

where some additional information (attributes) is appended to

one or more of its non-terminals in order to provide context-

sensitive information.

• Each attribute has well-defined domain of values, such as

integer, float, character, string, and expressions.

• Attribute grammar is a medium to provide semantics to the

context-free grammar and it can help specify the syntax and

semantics of a programming language.

• Attribute grammar (when viewed as a parse-tree) can pass

values or information among the nodes of a tree.

Example:

• E → E + T { E.value = E1.value + T.value }

• The right part of the CFG contains the semantic rules that

specify how the grammar should be interpreted.

• Here, the values of non-terminals E and T are added together

and the result is copied to the non-terminal E.

• Semantic attributes may be assigned to their values from their

domain at the time of parsing and evaluated at the time of

assignment or conditions.

• Attributes may be divided into two categories

1) synthesized attributes

2)inherited attributes.

Synthesized attributes

• A Synthesized attribute is an attribute of the non-terminal on the left-hand

side of a production with semantic value

• The attribute can take value only from its children (Variables in the RHS of

the production).

• For e.g. let’s say A -> BC is a production of a grammar, and A’s attribute is

dependent on B’s attributes or C’s attributes then it will be synthesized

attribute.

• Ex: A->BCD

• A is calculate with its children B,C,D values

Example of S-attributed SDD

• Production

1)L -> E n

2)E -> E1 + T

3)E -> T

4)T -> T1 * F

5)T -> F

6)F -> (E)

7)F -> digit

• Semantic Rules

L.val = E.val

E.val = E1.val + T.val

E.val = T.val

T.val = T1.val * F.val

T.val = F.val

F.val = E.val

F.val = digit.lexval

S-attributed SDT :

• If an SDT uses only synthesized attributes, it is called as

S-attributed SDT.

• S-attributed SDTs are evaluated in bottom-up parsing, as

the values of the parent nodes depend upon the values of

the child nodes.

• Semantic actions are placed in rightmost place of RHS.

• Example of S-attributed SDD

Production Semantic Rules

L -> E n L.val = E.val

E -> E1 + T E.val = E1.val + T.val

Inherited attributes

• An attribute of a nonterminal on the right-hand side of a

production is called an inherited attribute.

• The attribute can take value either from its parent or from its

siblings (variables in the LHS or RHS of the production)

• For example, let’s say A -> BC is a production of a grammar

and C’s attribute is dependent on A’s attributes or B’s attributes

then it will be inherited attribute.

L-attributed SDT:

• If an SDT uses both synthesized attributes and inherited

attributes with a restriction that inherited attribute can

inherit values from left siblings only, it is called as L-

attributed SDT.

• Attributes in L-attributed SDTs are evaluated by depth-

first and left-to-right parsing manner.

• Semantic actions are placed anywhere in RHS.

• Example : S -> MN {S.val= M.val + N.val}

Evaluation orders for SDD’s

• A dependency graph is used to determine the order of

computation of attributes

• Dependency graph

• If a semantic rule defines the value of synthesized attribute A.b in

terms of the value of X.c then the dependency graph has an

edge from X.c to A.b

• If a semantic rule defines the value of inherited attribute B.c in

terms of the value of X.c then the dependency graph has an

edge from X.c to B.c

Ordering the evaluation of attributes

• If dependency graph has an edge from M to N then M must be

evaluated before the attribute of N

• Thus the only allowable orders of evaluation are those

sequence of nodes N1,N2,…,Nk such that if there is an edge

from Ni to Nj then i<j

• Such an ordering is called a topological sort of a graph

Applications

• Type checking

• Postfix evaluation

• Intermediate Code generation

Declarations

Type check

• E → E1 + E2 { if((E1.type == E2.type) && (E1.type = int)) then

E.type = int else error;}

• E → E1==E2 { if((E1.type == E2.type) && (E1.type =int/boolean)) then

E.type = boolean else error;}

• E →(E1) { E.type = E1.type;}

• E → num { E.type = int;}

• E → true { E.type = boolean;}

• E → false { E.type = boolean;}

Example of postfix SDT schema

1) L -> E n {print(E.val);}

2) E -> E1 + T E.val=E1.val+T.val;}

3) E -> T {E.val = T.val;}

4) T -> T1 * F T.val=T1.val*F.val;}

5) T -> F {T.val=F.val;}

6) F -> (E) {F.val=E.val;}

7) F -> digit {F.val=digit.lexal;}

Example

L -> E n {print(stack[top-1].val);

top=top-1;}

E -> E1 + T {stack[top-2].val=stack[top-2].val+stack.val;

top=top-2;}

E -> T

T -> T1 * F {stack[top-2].val=stack[top-2].val+stack.val;

top=top-2;}

T -> F

F -> (E) {stack[top-2].val=stack[top-1].val

top=top-2;}

F -> digit

Gate Questions

QUESTION NO 1:

• Incompatable types work with the _____________

A. Syntax tree

B.semantic analyzer

C.Code optimizer

D.Lexical analyzer

Question 2

Explanation

Question 3

Question 4

Question 5

Question 6

Question 7

Question 8

Answer (C)

Question 9

Question 10

Question 11

Question 12

Question 13

THANK YOU

