Greedy Method

Prof. Shaik Naseera
Department of CSE
JNTUA College of Engg., Kalikiri

Objectives

e Greedy Method

« Applications
— Optimal Storage on Tapes
— Job Sequencing with Deadlines
— Knapsack Problem
— Single Source Shortest Path

e Previous Gate Questions

Greedy Method

The Greedy method is a most straight forward design
technigue which can be applied to a wide variety of
problems.

This algorithm works in steps. In each step it selects the
best available options until all options are finished.

Most of the problems have n inputs and require us to
obtain a subset that satisfies some constraints.

Any subset that satisfies these constraints Is called as a
feasible solution.

A feasible solution that either minimizes or maximizes
a given objective function 1s called as Optimal
Solution.

3

Greedy Algorithm

The Greedy method suggest that one can devise an
algorithm that work In stages, considering one input at a
time.

At each stage, a decision Is made regarding whether a
particular input Is an optimal solution or not.

This 1s done by considering the Inputs in an order
determined by some selection procedure.

If the inclusion of the next input Iinto the partially
constructed optimal solution results sub-
optimal/infeasible solution, then that input is not added to
the partial solution. Otherwise, it Is added. The selection
procedure itself is based on some optimization measures.

Control Abstraction for Greedy Method

procedure GREEDY(A,n)
//A(1:n) contains the n inputs//
solution — ¢ //initialize the solution to empty//
fori —~ 1 ton do
x — SELECTA)
if FEASIBLE (solution,x)
then solution — UNION(solution,x)
endif
repeat
return| (solution)
end GREEDY

Select selects an input from a[] and removes it. The selected input’s value Is
assigned to x.

Feasible is a Boolean-valued function that determines whether x can be included
Into the solution vector or not.

Union combines x with the solution and updates the objective function.

Types of Greedy Problems

e Subset Paradigm
e To solve a problem (or possibly find the
optimal/best solution), greedy approach generate
subset by selecting one or more available choices.
Eg. includes Knapsack problem, job sequencing
with deadlines. In both of the problems greedy
create a subset of items or jobs which satisfies all
the constraints.
e QOrdering Paradigm
e In this, greedy approach generate some
arrangement/order to get the best solution. Eg.
Includes: Minimum Spanning tree

Applications

Fractional knapsack algorithm
Optimal Storage on tapes
Job sequencing with deadline

Single source shortest path
— Dijkstra's SSSP algorithm

Activity Selection Problem
Minimum Cost Spanning Tree

Optimal Storage on Tapes

e Optimal Storage on Tapes is one of the application
of the Greedy Method.

e The objective is to find the Optimal retrieval time
for accessing programs that are stored on tape.

Description

There are n programs that are to be stored on a computer
tape of length L.

Associated with each program i is a length |;

Clearly, all programs can be stored on the tape if and only if
the sum of the lengths of the programs is at most L.

We shall assume that whenever a program is to be
retrieved from this tape, the tape Iis initially positioned at
the front.

Hence' if the programs are stored in the order 1=y, I, I I,
the time t; needed to retrieve program ; Is proportlonai fo

L -
If all programs are retrieved equally often then the t; = Z li,
expected or mean retrieval time (MRT) Is 15k

MRT =1/n Z 2
1Dj=n

Example

Example 1 Letn = 3 and (y, /2, ;) = (5, 10, 3). There are n! = 6
possible orderings. These orderings and their respective D values are:

ordering I D{)

1,23 S+ 5+ 10+ 5+10 +3 =38
1,32 S +5+3+ 5+ 3+10=131
21,3 10+104+5+410 +5+3=43
231 10+10+3+10 +3 +5 =41
312 3 +3+5+ 3+ S5+10=29
3,2,1 34+ 3+10+ 3+10 +5 =34

The optimal ordering is 3,1,2. O]

10

Method

* The greedy method simply requires us to store
the programs in non-decreasing order of their
lengths.

 This ordering (sorting) can be carried out In
O(n log n) time using an efficient sorting
algorithm

Algorithm for multiple tapes

procedure STORE(n, m)
//n 1s the number of programs and m the number of tapes//
integer m, n, j
J — 0 //next tape to store on//
fori — 1ton do
print (‘append program’, i, ‘to permutatior for tape’, j)
J—(+ 1) mod m
repeat
end STORE

Note: The programs are assumed to be in increasing order of their lengths

Knapsack Problem

Let, we are given n objects and a Knapsack or
Bag.

Object I has weight W: and the Knapsack has a
capacity M.

IT a fraction X; of object 1 is placed into
Knapsack, then a profit of P, X, Is earned.

The objective Is to obtain a filling of Knapsack
that maximizes the total profit earned.

Maximize Z pixi (A)

Subject to Z WiXi =M (B)

And0<X;<1,1<i<n (C)
The profit and weights are the positive numbers.

Here, A feasible solution is any set (X1, X2, ...,
Xn) satisfying above rules (B) and (C).

And an optimal solution Is feasible solution for
which rule (A) Is maximized.

Here, N=3, M=20, (P1, P2, P3)=(25, 24, 15) and (W1, W2, W3)=(18, 15, 10)
Different feasible solutions are:

(X1, X2, X3) > wixi Z, Fixe
1. (1/2, 1/3, ¥4) 16.5 24.25
2. (1, 2/15,0) 20 28.2
3.(0, 2/3,1) 20 31
4.(0,1,1/2) 20 31.5
5.(1/2, 2/3, 1/ 10) 20 30
6. (1, 0, 2/10) 20 28

* Of these Six feasible solutions, solution 4 yields the maximum profit.
Therefore solution 4 is optimal for the given problem instance.

* Consideration 1 - In case the sum of all the weights is <M, then Xi=1, 1 <i<n
Is an optimal solution.

* Consideration 2 - All optimal solutions will fill the knapsack exactly.

The knapsack algorithm

* The greedy algorithm:
Step 1: Sort p//w; into nonincreasing order.
Step 2: Put the objects into the knapsack according
to the sorted sequence as possible as we can.
° e.0.

n=3,M=20, (p,, p,, P3) = (25, 24, 15)

(W, w,, w,) = (18, 15, 10)

Sol: p,/w, =25/18 =1.39
p,/w,=24/15=1.6
ps/w,=15/10=1.5

Optimal solution: x, =0, X, =1, X;=1/2

total profit=24+7.5=31.5

p[i]/w[ilzp[i+1]2w[i+1]

Algorithm

e Algorithm GreedyKnapsack(m,n)
//order the n objects such that p[i]/w[i]2p[i+1]2w[i+1]
{
fori:=1to n do x[i]:=0.0;
U:=m;
fori:=1tondo
{
If(w[i] > U) then break;
X[1]:=1.0; U:=U-wl[i];
}
If(1 < n) then x[i]:=U/W[i];
}

Example problem

N=7
M=15(15-1=14-2=12-4=8-5=3-1=2)
(p1,p2...p7)=(10,5,15,7,6,18,3)
(wlw2.w7)=(2,3,5,7,1,4,1)

The solution vector is (1,2/3,1,0,1,1,1)

P1/wl1=5 p2/w2=1.66 p3/w3=3 p4/w4=1
pP5/w5=6 p6/w6=4.5 p7/w7=3

X5,X1,X6,X3,X7 X2 x4
Weight Is 1+2+4+5+1+2/3*3+0=13+2/3*3=15
Profitis 6+10+18+15+3+2/3*5+0=55.34

(1,2/3,1,0,1,1,1)

Job Sequencing with Deadlines

We are given a set of n jobs.

Di is a deadline given to complete itjob for profit Pi where Pi>0 &
Di > 0.

For any job i profit Pi is earned iff the job is completed within its
deadline.

To complete a job, one has to process the job on a machine for one
unit of time.

Only one machine is available for processing jobs.

A feasible solution for this problem is a subset J of jobs such that
each job in this subset can be completed by its deadline.

The value of a feasible solution J is the sum of the profits of the job
In J.
An optimal solution is a feasible solution with maximum value.

Example —Suppose on a single machine four jobs with
profit values (100, 10, 15 and 27) and their respective
deadline unit values (2, 1, 2, 1) are given. Calculate the
different feasible solutions to complete the jobs with
optimal solution.

Solution:
Number of Jobs (n)=4

Profit values of four jobs (P1, P2, P3, P4)=(100, 10, 15, 27)
Process deadlines for respective jobs are
(D1, D2,D3,D4)=(2,1, 2,1)

(P1, P2, P3, P4)=(100, 10, 15, 27) (D1, D2,D3,D4) =(2,1, 2,1)
The feasible solutions and their values are —

Feasible sol. subset Processing Sequence Values
(1, 2) (2,1) 110
(1, 3) (1,30r3,1) 115
(1, 4) (4,1) 127
(3, 2) (2,3) 25
(3, 4) (4, 3) 42
(1) (1) 100
(2) (2) 10
(3) (3) 15
(4) (4) 27

Here, Solution 3 is optimal solution. In this solution only job 1 and 4
are processed and the profit value is 127. These jobs must be
processed in the order Job 4 followed by job 1. Thus the processing
of job 4 begins at time zero and that of job 1 is completed at time 2.

Algorithm

line procedure GREEDY_JOB(D, J, n)
//J is an output variable. It is the set of jobs to be completed by//

//their deadlines//
1 j-{1}
2 fori — 2tondo
3 if all jobs inJ U {i} can be completed by their deadlines
thenJ — J U {i}
4 endif
S repeat

6 end GREEDY_JOB
Algorithm 4.4 High level description of job sequencing algorithm

e The algorithm constructs an optimal set J of jobs that
can be processed by their deadlines.

Single-Source Shortest Path
(Dijkstra's algorithm)

23

Single-Source Shortest Path Problem

Single-Source Shortest Path Problem - The
problem of finding shortest paths from a source
vertex v to all other vertices in the graph.

24

Dijkstra's algorithm

Dijkstra's algorithm - is a solution to the single-source
shortest path problem in graph theory.

Works on both directed and undirected graphs.
However, all edges must have nonnegative weights.

Approach: Greedy

Input: Weighted graph G={E,V} and source vertex veV,
such that all edge weights are nonnegative

Output: Lengths of shortest paths (or the shortest
paths themselves) from a given source vertex veV to
all other vertices

25

Dijkstra's algorithm - Pseudocode

dist[s] <O (distance to source vertex is zero)
for all v e V-{s}
do dist]v] «—o0 (set all other distances to infinity)

S—0 (S, the set of visited vertices is initially empty)
Q—V (Q, the queue initially contains all vertices)
while Q =0 (while the queue is not empty)
do u <« mindistance(Q,dist) (select the element of Q with the min.
distance)

S—Su{u}

Q=Q-{u} (add u to list of visited vertices)

forall v € neighbors[u]

do if dist[v] > distfu] + w(u, v) (if new shortest path found)

then d[v] «d[u] +w(u,v) (set new value of shortest path)
(if desired, add traceback code)
return dist

26

Dijkstra Animated Example

Initialize:

0: 4 B C D E

0 50 o & oo

27

Dilkstra Animated Example

28

Dijkstra Animated Example

29

Dijkstra Animated Example

S 4 £

30

Dijkstra Animated Example

31

Dijkstra Animated Example

32

Dijkstra Animated Example

7
(B,
| 4
G

3

H H s

S: {4, CE)

33

Dijkstra Animated Example

7
B,
| 4
G

3

~]
ot
e

S:{A C E B}

34

Dijkstra Animated Example

b
0 7 9
0 D
0 oo o o o 2
10 Bl o© o©
7 11 B 3 S
7 11

9 S:{A C E B}

35

Dijkstra Animated Example

b
0 7 9
0
00 oo o o o 2
10 3 o0
: 3 5

S: {4, CEBD)

36

Implementations and Running Times

The simplest implementation Is to store vertices in an array
or linked list. This will produce a running time of

O(IVI*2 + |E])

Where |E]| Is for search needed to find the minimum
d%sltzancg node. //A node may be connected to a maximum
of E nodes

For sparse graphs, or graphs with very few edges and
many nodes, it can be implemented more efficiently storing
the graph in an adjacency list using a binary heap or
priority queue. This will produce a running time of

O((|E[|*|V|) log |V]) //inner loop Is replaced by a heap

37

DIJKSTRA'S ALGORITHM - WHY USE IT?

« As mentioned, Dijkstra’s algorithm calculates
the shortest path to every vertex.

e Therefore, any time we want to know the
optimal path to some other vertex from a
determined origin, we can use Dijkstra’s
algorithm.

38

Example

e Vertex 1 is the source

2 3 4 5 6 7
inf inf inf inf inf Inf
25 inf inf inf inf inf
35 39 inf inf inf
39 inf 51 Inf
inf 51 inf
93 65

93

39

Previous Gate Questions

Q.No.1 GATE CSE 2006

To implement Dijkstra’s shortest path algorithm on unweighted graphs so that it runs in
linear time, the data structure to be used is:

Queue takes linear time

41

. NO.
Consider the weights and values of items listed below. Note that there is only one unit

of each item. Answer Is 16

Weight Value 16
Thevalugof Vo = V.o 18 ,
Item number (in Kas)| (in Rupees) o Vo
1 L 60 60/10 =6
2 7 g 28/7 =4 Answer
3 4 20 20/4 =5 Correct Ansvier s 16
24/2 =12
4 2 24)
X, x1,x3,x2 24+20=44

The task is to pick a subset of these items such that their total weight is no more than
11 K gs and their total value is maximized. Moreover, no item may be split. The total
value of items picked by an optimal algorithm is denoted by Vﬂpt. A greedy algorithm

sorts the items by their value-to-weight ratios in descending order and packs them
greedily, starting from the first item in the ordered list. The total value of items picked

by the greedy algorithm is denoted by Vgreedy.
Vope= Using dynamic programming is 60

Q. No. 3

Consider the directed graph shown in the figure below. There are multiple shortest paths
between vertices S and T. Which one will be reported by Dijstra?s shortest path algorithm?
Assume that, in any iteration, the shortest path to a vertex v is updated only when a strictly
shorter path to v is discovered.

(A) SDT
(B) SBDT
(C) SACDT
(D) SACET

Answer: (D)

Explanation:

Background Required — Dijkstra's Single Source Shortest Path Algorithm

Explanation — Applying Dijkstra’s algorithm to compute the shortest distances from S and finally generating the

43

Tree as given below in the diagram.

44

Q.No. 4

If we run disjkstra algorithm on source vertex (S) to the following
graph then which of the following is possible order of visiting
nodes?

LS,A.C,D,E.B II.S,A,D.C,E.B 1III.S,A,D.E.C,B

(A) only I, III (B) only II, III

(C) only L 1I (D) L II, IIT

Answer: None of the Above

45

Q.No.5 GATE CSE 2004

Suppose we run Dijkstra’s single source shortest-path algorithm on the following
edge-weighted directed graph with vertex P as the source.

In what order do the nodes get included into the set of vertices for which the shortest
path distances are finalized?

O P.QRSTU
p g r s t u
0 inf _inf inf inf ir_1f
® P.Q.RU,S,T s s
4 3
e P,Q,R.,U,T,S p.qg.ru st

® P.Q,T.RU,S

Q. No. 6 GATE CSE 2000

Let G be an undirected connected graph with distinct edge weight. Let emax be the
edge with maximum weight and emin the edge with minimum weight. Which of the
following statements is false?

9 Every minimum spanning tree of G must contain emin
9 If emax 1s In a minimum spanning tree. then its removal must disconnect G
G No minimum spanning tree contains emax

G (G has a unique minimum spanning free

47

Q. No. 7 Given below are some algorithms, and some algorithm design paradigms.
List-|
A. Dijkstra’s Shortest Path 3
B. Floyd-Warshall algorithm to compute all pairs shortest path 2
C. Binarysearch onasorted array 1
D. Backtracking search onagraph 4

1 Divide and Conquer

2. Dynamic Programming

3. Greedy design

4 Depth-first search

5. Breadth-first search

Match the above algorithms on the left to the corresponding design paradigm they follow Codes:
ABCD

(@1315

(b)3315

(c)3214

(d)3215

Options:

A)a

B) b

C)c

D) D Answer C

Q.No.9

There are multiple routes to reach from node 1 to node 2, as shown in the network.

7N 100 i
{’I‘r b
d) HI;zuﬂ
NGl TR
R /
"xfxf 100

The cost of travel on an edge between two nodes is given in rupees. Nodes ‘a, ‘b, 'c’, 'd’, ‘¢,
and 'f" are toll booths. The toll price at toll booths marked 'a’ and ‘e’ is Rs. 200, and is Rs.
100 for the other toll booths. Which is the cheapest route from node 1 to node 2 ?

(A) 1-a-c-2

(B) 1-f-b-2 1T abcde f 2
(E}1—b—2 0 inf inf inf Inf Inf Inf inf_
200 300 inf inf inf 100 inf

(D) 1-f-e-2 100 inf inf 200 inf
100 200 300

200 300
300

Ancwer: (R

1-f-b-2

Q. No. 10

Let G(V, E) an undirected graph with positive edge weights. Dijkstra's single-source
shortest path algorithm can be implemented using the binary heap data structure with

time complexity:

0 0(|Vﬁ2)
Q O(|E| +

Vilog|V))
© O([V|log|V])

© O((E]+[V])log|V])

GATE CSE 2005

m o (¢] @ >

=) =) © ~ =) >

o w N o &~ @

© (3] o n -] (9]

~ o (4] (3] o o

o B © o o m

50

