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Objectives

• Greedy Method
• Applications

– Optimal Storage on Tapes
– Job Sequencing with Deadlines
– Knapsack Problem
– Single Source Shortest Path

• Previous Gate Questions
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Greedy Method
• The Greedy method is a most straight forward design

technique which can be applied to a wide variety of
problems.

• This algorithm works in steps. In each step it selects the
best available options until all options are finished.

• Most of the problems have n inputs and require us to
obtain a subset that satisfies some constraints.

• Any subset that satisfies these constraints is called as a
feasible solution.

• A feasible solution that either minimizes or maximizes
a given objective function is called as Optimal
Solution. 3



• The Greedy method suggest that one can devise an
algorithm that work in stages, considering one input at a
time.

• At each stage, a decision is made regarding whether a
particular input is an optimal solution or not.

• This is done by considering the inputs in an order
determined by some selection procedure.

• If the inclusion of the next input into the partially
constructed optimal solution results sub-
optimal/infeasible solution, then that input is not added to
the partial solution. Otherwise, it is added. The selection
procedure itself is based on some optimization measures.
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Control Abstraction for Greedy Method

Select selects an input  from a[] and removes it. The selected input’s value is 
assigned to x. 

Feasible is  a Boolean-valued function that determines whether x can be included 
into the  solution vector or not. 

Union combines x with the solution and  updates the objective function. 
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Types of Greedy Problems
• Subset Paradigm

• To solve a problem (or possibly find the
optimal/best solution), greedy approach generate
subset by selecting one or more available choices.
Eg. includes Knapsack problem, job sequencing
with deadlines. In both of the problems greedy
create a subset of items or jobs which satisfies all
the constraints.

• Ordering Paradigm
• In this, greedy approach generate some

arrangement/order to get the best solution. Eg.
includes: Minimum Spanning tree
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Applications

• Fractional knapsack algorithm
• Optimal Storage on tapes
• Job sequencing with deadline
• Single source shortest path

– Dijkstra's SSSP algorithm
• Activity Selection Problem
• Minimum Cost Spanning Tree
• …
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Optimal Storage on Tapes

• Optimal Storage on Tapes is one of the application
of the Greedy Method.

• The objective is to find the Optimal retrieval time
for accessing programs that are stored on tape.
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Description
• There are n programs that are to be stored on a computer 

tape of length L. 
• Associated with each program i is a length l;
• Clearly, all programs can be stored on the tape if and only if 

the sum of the lengths of the programs is at most L. 
• We shall assume that whenever a program is to be 

retrieved from this tape, the tape is initially positioned at 
the front.

• Hence' if the programs are stored in the order I=i1, i2’  i3 …. in
the time tj needed to retrieve program ij is proportional to  
lik . 

• If all programs are retrieved equally often then the 
expected or mean retrieval time (MRT) is 
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Example
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Method

• The greedy method simply requires us to store 
the programs in non-decreasing order of their 
lengths. 

• This ordering (sorting) can be carried out in 
O(n log n) time using an efficient sorting 
algorithm
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Algorithm for multiple tapes

Note: The programs are assumed to be in increasing order of their lengths 12



Knapsack Problem

• Let, we are given n objects and a Knapsack or  
Bag.

• Object i has weight Wi and the Knapsack has a 
capacity M.

• if a fraction Xi of object i is placed into  
Knapsack, then a profit of PiXi is earned.

• The objective is to obtain a filling of Knapsack  
that maximizes the total profit earned.
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• Maximize (A)

• Subject to (B)
•

• And 0 ≤ Xi ≤ 1, 1 ≤i ≤n (C)
• The profit and weights are the positive numbers.
• Here, A feasible solution is any set (X1, X2, …,  

Xn) satisfying above rules (B) and (C).
• And an optimal solution is feasible solution for  

which rule (A) is maximized.
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Here, N=3, M=20, (P1, P2, P3)=(25, 24, 15) and (W1, W2, W3)=(18, 15, 10)
Different feasible solutions are:

(X1, X2, X3)

1. (1/2, 1/3, ¼) 16.5 24.25
2. (1, 2/15, 0) 20 28.2
3. (0, 2/3, 1) 20 31
4. (0, 1, 1/2) 20 31.5
5. (1/2, 2/3, 1/ 10) 20 30
6. (1, 0, 2/10) 20 28

• Of these Six feasible solutions, solution 4 yields the maximum profit.  
Therefore solution 4 is optimal for the given problem instance.
Consideration 1 - In case the sum of all the weights is ≤ M, then Xi=1, 1 ≤ i ≤n  
is an optimal solution.
Consideration 2 - All optimal solutions will fill the knapsack exactly.

•

•
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The knapsack algorithm
• The greedy algorithm: 

Step 1: Sort pi/wi into nonincreasing order. 
Step 2: Put the objects into the knapsack according

to the sorted sequence as possible as we can.
• e. g.

n = 3, M = 20, (p1, p2, p3) = (25, 24, 15) 
(w1, w2, w3) = (18, 15, 10) 
Sol: p1/w1 = 25/18 = 1.39 

p2/w2 = 24/15 = 1.6 
p3/w3 = 15/10 = 1.5 

Optimal solution: x1 = 0, x2 = 1, x3 = 1/2 
total profit = 24 + 7.5 = 31.5

p[i]/w[i]≥p[i+1]≥w[i+1]
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Algorithm
• Algorithm GreedyKnapsack(m,n)
//order the n objects such that p[i]/w[i]≥p[i+1]≥w[i+1]
{
for i:=1 to n do x[i]:=0.0;

U:=m;
for i:=1 to n do
{

if(w[i] > U) then break;
x[i]:=1.0; U:=U-w[i];

}
if( i ≤ n) then x[i]:=U/w[i];
}
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Example problem

• N=7
• M=15(15-1=14-2=12-4=8-5=3-1=2)
• (p1,p2…p7)=(10,5,15,7,6,18,3)
• (w1,w2..w7)=(2,3,5,7,1,4,1) 
• The solution vector is (1,2/3,1,0,1,1,1)
• P1/w1=5 p2/w2=1.66 p3/w3=3 p4/w4=1 

p5/w5=6 p6/w6=4.5 p7/w7=3
• x5,x1,x6,x3,x7,x2,x4
• Weight is 1+2+4+5+1+2/3*3+0=13+2/3*3=15
• Profit is 6+10+18+15+3+2/3*5+0=55.34

(1,2/3,1,0,1,1,1) 18



Job Sequencing with Deadlines
•
•

We are given a set of n jobs.
Di is a deadline given to complete ith job for profit Pi where Pi>0 &  
Di ≥ 0.
For any job i profit Pi is earned iff the job is completed within its  
deadline.
To complete a job, one has to process the job on a machine for one  
unit of time.
Only one machine is available for processing jobs.
A feasible solution for this problem is a subset J of jobs such that  
each job in this subset can be completed by its deadline.
The value of a feasible solution J is the sum of the profits of the job  
in J.
An optimal solution is a feasible solution with maximum value.

•

•

•
•

•

•
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• Example –Suppose on a single machine four jobs  with 
profit values (100, 10, 15 and 27) and their respective 
deadline unit values (2, 1, 2, 1) are  given. Calculate the 
different feasible solutions to  complete the jobs with 
optimal solution.

• Solution:
• Number of Jobs (n)= 4
• Profit values of four jobs (P1, P2, P3, P4)=(100, 10, 15, 27) 

• Process deadlines for respective jobs are 

(D1, D2, D3, D4)=(2, 1, 2, 1)
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(P1, P2, P3, P4)=(100, 10, 15, 27) (D1, D2, D3, D4) =(2, 1, 2, 1)
The feasible solutions and their values are –
Feasible sol. subset Processing Sequence Values
(1, 2) (2, 1) 110
(1, 3) (1, 3 or 3, 1) 115
(1, 4) (4, 1) 127
(3, 2) (2, 3) 25
(3, 4) (4, 3) 42
(1) (1) 100
(2) (2) 10
(3) (3) 15
(4) (4) 27

Here, Solution 3 is optimal solution. In this solution only job 1 and 4  
are processed and the profit value is 127. These jobs must be  
processed in the order Job 4 followed by job 1. Thus the processing  
of job 4 begins at time zero and that of job 1 is completed at time 2.
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Algorithm

• The algorithm constructs an optimal set J of jobs that 
can be processed by their deadlines. 22



Single-Source Shortest Path 
(Dijkstra's algorithm)
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Single-Source Shortest Path Problem 

Single-Source Shortest Path Problem - The 
problem of finding shortest paths from a source 
vertex v to all other vertices in the graph.
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Dijkstra's algorithm 
Dijkstra's algorithm - is a solution to the single-source 
shortest path problem in graph theory.

Works on both directed and undirected graphs. 
However, all edges must have nonnegative weights.

Approach: Greedy

Input: Weighted graph G={E,V} and source vertex v∈V, 
such that all edge weights are nonnegative

Output: Lengths of shortest paths (or the shortest 
paths themselves) from a given source vertex v∈V to 
all other vertices

25



Dijkstra's algorithm - Pseudocode

dist[s] ←0        (distance to source vertex is zero)
for all v ∈ V–{s}

do dist[v] ←∞ (set all other distances to infinity) 
S←∅ (S, the set of visited vertices is initially empty) 
Q←V (Q, the queue initially contains all vertices) 
while Q ≠∅ (while the queue is not empty) 
do u ← mindistance(Q,dist) (select the element of Q with the min. 
distance) 

S←S∪{u} 
Q=Q-{u} (add u to list of visited vertices) 
for all v ∈ neighbors[u]

do if dist[v] > dist[u] + w(u, v) (if new shortest path found)
then d[v] ←d[u] + w(u, v) (set new value of shortest path)

(if desired, add traceback code)
return dist
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Dijkstra Animated Example
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Dijkstra Animated Example
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Dijkstra Animated Example
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Dijkstra Animated Example
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Dijkstra Animated Example
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Dijkstra Animated Example
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Dijkstra Animated Example
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Dijkstra Animated Example
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Dijkstra Animated Example
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Dijkstra Animated Example
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Implementations and Running Times
The simplest implementation is to store vertices in an array 
or linked list. This will produce a running time of

O(|V|^2 + |E|)

Where |E| is for search needed to find the minimum 
distance node.  //A node may be connected to a maximum 
of E nodes

For sparse graphs, or graphs with very few edges and 
many nodes, it can be implemented more efficiently storing 
the graph in an adjacency list using a binary heap or 
priority queue. This will produce a running time of

O((|E|+|V|) log |V|)     //inner loop is replaced by a heap
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• As mentioned, Dijkstra’s algorithm calculates 
the shortest path to every vertex. 

• Therefore, any time we want to know the 
optimal path to some other vertex from a 
determined origin, we can use Dijkstra’s
algorithm.

DIJKSTRA'S ALGORITHM - WHY USE IT?
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Example

• Vertex 1 is the source 

1 2 3 4 5 6 7
0 inf inf inf inf inf Inf

25 inf inf inf inf inf
35 39 inf inf inf

39 inf 51 Inf
inf 51 inf
93 65
93
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Previous Gate Questions
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Queue takes linear time

Q. No. 1
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60/10 =6
28/7 =4

20/4  =5

24/2 =12

X4, x1, x3, x2 24+20=44

Vopt= using dynamic programming is 60 

16

Answer is 16

Q. No. 2
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Q. No. 3
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Q. No. 4

Answer: None of the Above
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Q. No. 5
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Q. No. 6
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• Given below are some algorithms, and some algorithm design paradigms.
List-I 
A. Dijkstra’s Shortest Path   3
B. Floyd-Warshall algorithm to compute all pairs shortest path   2
C. Binary search on a sorted array    1
D. Backtracking search on a graph    4
List-II 
1. Divide and Conquer 
2. Dynamic Programming 
3. Greedy design 
4. Depth-first search 
5. Breadth-first search 
Match the above algorithms on the left to the corresponding design paradigm they follow Codes: 

A B C D 
(a) 1 3 1 5 
(b) 3 3 1 5 
(c) 3 2 1 4 
(d) 3 2 1 5 
Options:
A) a
B) b
C) c
D) D                         Answer C

Q. No. 7
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Q. No. 9
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Q. No. 10
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