Dynamic Programming

By
Prof. Shaik Naseera
Department of CSE

JNTUA College of Engg., Kalikiri

Objectives

Introduction to Dynamic Programming
Longest Common Subsequence

Shortest Path Problems

— All Pairs Shortest Path

— Travelling Sales Person Problem
— Multi-Stage Graphs

Previous Gate Questions

Introduction

Dynamic Programming is an algorithm design method that can be
used when the solution to a problem may be viewed as the result
of a sequence of decisions.

One way to solve problems for which it is not possible to make a
sequence of stepwise decisions leading to an optimal decision
sequence Is to try out all possible decision sequences.

We could enumerate all decision sequences and then pick out the
best.

Dynamic programming often drastically reduces the amount of
enumeration by avoiding the enumeration of some decision
sequences that cannot possibly be optimal.

In dynamic programming an optimal sequence of decisions is
arrived at by making explicit appeal to the Principle of Optimality.

This principle states that an optimal sequence of decisions has the
property that whatever the initial state and decision are, the
remaining decisions must constitute an optimal decision sequence
with regard to the state resulting from the first decision.

Dynamic Programming

Well known algorithm design techniques:..
— Divide-and-conquer algorithms

Another strategy for designing algorithms is dynamic

programming.

— Used when problem breaks down into recurring small
subproblems

Dynamic programming is typically applied to
optimization problems. In such problem there can be
many solutions. Each solution has a value, and we
wish to find a solution with the optimal value.

Divide-and-conquer —
Examplel

) Merge-Sort (%, p,)
O For example, v p<r B
MergeSort G- (p+r) /2

Merge-Sort (R, o, O
Merge-Sort (A, gt+l, r)
Merge (A, p, <, I)

O The subproblems are
independent, all
different.

Example 2: Fibonacci numbers

o Recall definition of Fibonacci numbers:
F(n) = F(n-1) + F(n-2)
F(O)=0
F(1)=1
Series: 0,1,1, 2, 3,5, 8, 13, 21, 34, 55, ...

« Computing the nt" Fibonacci number recursively (top-down):

F(n)
F(n-1) + F(n-2)

F(n-2) + F(n-},)/F(n-B)\+E(n-4)

13

Fibonaccli Numbers

Fo)— &
FS) o
/ i s /\
F(4)

/\ /\ fff\
F(3) F(1) F(1)

/Fu[< F(1) F{ij F(1) F(1)

F(1) F(0)

O We keep calculating the same value over and over!

Running time complexity becomes exponential

DP Approach: Fibonacci Numbers

 We can calculate Fn in linear time py remembering

solutions to the solved subproblems — dynamic
programming

 Compute solution in a bottom-up fashion

In this case, only two values need to be
remembered at any time

Fibonaceci (n)
F <0
Fo«1
for 1 <« 2 to n do
F, «< F,, + F,_,

Difference between DP and Divide-and-Conquer

« Using Divide-and-Conquer to solve these
problems Is inefficient pecause the same

common subproblems have to be solved many
times.

e DP will solve each of them once and their
answers are stored 1n a table for future use.

Applications of Dynamic Programming

Longest common subsequence
Shortest path problems

e Multi Stage Graphs

« All Pair Shortest Path

* Travelling Sales Person Problem
1/0 Knapsack

Reliability Design

Matrix chain multiplication
Optimal Merge portions
Mathematical optimization
Optimal Binary Search Tree

Longest Common Subsequence

The longest common
subsequence (LCS) problem is the problem of
finding the longest subsequence common to all
seqguences in a set of sequences

Subseguences

A subsequence is a sequence that appears in the same
relative order, but not necessarily contiguous.

In LCS ,we have to find Longest Common
Subsequence that is in the same relative order.

String of length n has 2”n different possible
subsequences.

E.g—
Subsequences of “ABCDEFG”.
“ABC”,”ABG”,”BDF”,”AEG”,’ACEFG”, IIIIIII

Common Subsequences

Suppose that X and Y are two sequences
over a set S.

X: ABCBDAB
Y: BDCABA
Z: BCBA

We say that Z Is a common subsequence
of Xand Y if and only If

Z 1s a subsequence of X
Z 1s a subsequence of Y

The Longest Common
Subsequence Problem

Given two sequences X and Y over a set S,
the longest common subsequence problem
asks to find a common subsequence of X
and Y that i1s of maximal length.

Z=(B,C,A) Length 3 x:AscspAs Y:BDCABA

LCS Notation

Let X and Y be sequences.

We denote by LCS(X, Y) the set of longest
common subsequences of X and Y.

LCS(X,Y)
Functional notation,
but not a function

A Poor Approach to the LCS
Problem

A Brute-force solution:
Enumerate all subsequences of X
Test which ones are also subsequences of Y
Pick the longest one.

Analysis:

1T X is of length n, then it has 2
subsequences

This Is an exponential-time algorithm!

Dynamic Programming for LCS

Let us try to develop a dynamic
programming solution to the LCS problem.

Dynamic Programming for LCS

Example Input strings:
abcdaf

0
0
0
0
0

achcf

0 0
1 1
1 2
1 2
1 3
1 3

Solution: Cl

w w N N [o
EaN w N N [o

_ongest common subsequence=abct
L.ength =4

Pseudocode:

f input[i] == input]j]

TOIoI = Th-1]10-1] + 1;

Else

T0] = MAX{TO-1]0], TOID-1] 3

Solution

4

[—

1(2(2(2|2

lim|
]

alblc|d|a|f

0/0{0/0|0|0 |0

alol1/1|1]1]1]1

0
b|0]1(2]2]2]2]|2

c|0[1]2]343/3,)3

f{0|1]2|3(3|3

c

abcef

Procedure

Let X and Y be sequences.
Let c[i,j] be the length of an element in LCS(X, Y)).

- | if i:O i j:O
C[';j] - - C[i‘l,j‘l]"‘l ’ |f i,j>0 Qnd X; = YJ

max(c[i,j-1].c[i-1,j]1) |NELERREUCRARS

Dynamic Programming
Solution

Define L[i,J] to be the length of the longest common
subsequence of X[O..i] and Y[O..j].

L[1,J-1] = O and L[i-1,j]=0, to indicate that the null
part of X or Y has no match with the other.
Then we can define L[1,j] in the general case as
follows:
I xi=yj, then L[i,j] = L[i-1,j-1] + 1 (we can add this
match)
IT xizyj, then L[i,j] = max{L[i-1,j], L[i,j-1]} (we
have no match here)

X:?BFB
Y:BDCA LCS:BC

A /I\ ,I\ \
\ <= <)
A A \ .
\ A A A

Start at b[m,n]. Follow the arrows. Each

, diagonal array gives one element of the LCS.

Y. gqpqrr
P g |P

X. pgprqgrp

.

I

o [0 0 [0 (0 0 |0 |O

0 |1 |2 |2 |3 |3 |4 |4
0 |1 |2 |2 |3 |3 |4 |4

g 0 /o1 211 1|1
o (01]1]2]2]2 |2 |2
g |0 |1]2 122 |3 |3 |3

I
I

gprr

ALGORITHM LCS(X.Y)

m <« length[X]
n < length[Y]

for 1 <« 1 to m do
c[1,0] « O

for J «< 1 to n do
c[O,jJ] « O

24

LCS(X.Y)

for 1 < 1 to m do
for «~— 1 to n do

iT x, =,
C[i, il < c[i-1, j-11+1
elggl’ J_ < D7 //dlagonal
it cli-1, > CE
c[i, «—
ohi; 31 € < /’up
else [i. i1 i .
c[i, §j] « c[i, j-
b[i. 3] « “L” “//Teft

25

Analysis of LCS Algorithm

We have two nested loops
The outer one 1terates m times
The inner one I1terates n times

A constant amount of work i1s done inside
each iteration of the inner loop

Thus, the total running time is O(hm)

usage

Biological applications often need to
compare the DNA of two (or more)
different organisms.

We can say that two DNA strands are

similar 1T one Is a substring of the
other.

Shortest Path Problem

-All Pair Shortest Path
-Travelling Sales Person Problem
-Multi-stage Graph

All Pair Shortest Path

* The all pair shortest path algorithm is also
known as Floyd’s algorithm Is used to
find shortest graph distances between
every pair of vertices in a given graph.

» Asaresult of this algorithm, it will generate a
matrix, which will represent the minimum
distance from any node to all other nodes In
the graph.

Description

o All Pair Shortest Path Floyd Alg.pptx

Traveling Salesperson Problem

Let G = (V, E) be a directed graph with edge costs C Ci
Is defined such that C; >0 for all i and j and C;
if<ij>¢& E.

Let |V| =nandassumen>1.

A tour of G is a directed cycle that includes every
vertex in V.

The cost of a tour Is the sum of the cost of the edges
on the tour.

The traveling salesperson problem is to find a tour of
minimum cost.

— g(, S)=min{c;+g(J, S-U})} where JS

I

Example

- ; r0 1015 207
C\ /) > 0% 10
6 13 0 12
L8 8 9 0
(5 9

« We need to find the cost of the tour g(1, {2,3,4})

* 0(1,{2,3,4}) = min { c12+g(2, {3,4}),

c13+g(3, {2,4}),

cl4+g(4, {2,3}}

e 0(2,{3,4})=min {c23+g (3, {4}), c24+g(4, {3}) }

e 0(3,{4})= min {c34+g(4, I} =12+c41=12+8=20
e g(4, {3})=min {c43+q(3, D)} = 9+c31=9+6=15

e 0(2,{3,4})=min {c23+g (3, {4}), c24+g(4, {3}) }
=min {9+20, 10+15}

=min{29, 25} =25

g(4, @) = c41=8

e g(3, {2,4)=min {c32+g (2, {4}), c34+g(4, {2}) }
e g(2, {4})=min {c24+g(4, I} =10+8=18

e g(4, {2})=min {c42+g(2, O)} = 8+5=13

e g(3, {2,4)=min {c32+g (2, {4}), c34+g(4, {2}) }
=min {13+18, 12+13}

=min{31, 25} =25

e g(4, {2,3})=min {c42+g (2, {3}), c43+g(3, {2}) }
e g(2, {3})= min {c23+g(3, T} =9+6=15

e 0(3, {2})=min {c32+g(2, &)} = 13+5=18

e g(4,{2,3}))=min {c42+g (2, {3}), c43+9(3, {2}) }
=min {8+15, 9+18}

=min{23, 27} =23

e 9(1, {2,3,4}) = min{cl2+g(2, {3,4}),
c13+g(3, {2,4}),
cl4+g(4, {2,3} }

=min{10+25, 15+25, 20+23}
=min{35, 40, 43}
=35

The optimal path Is 1-2-4-3-1

020 3010

15016 4
3 50 2

119 6 18 0

¥l

Multi Stage Graph

el W wa
=
-
F) . 4 3
L 3 o i
5
¥ i
o 1
Il. .
11 .
i 1 X 1 o

MULTI 5TAGE GRAPH

Multi-stage Graph

A multistage graph is a directed graph in which the
vertices are partitioned into k > 2 disjoint sets V,,
1<i <k.

<u,v>IisanedgeinE, thenue V., andv € V,,, for
some I, 1<i <k.

The sets V, and V, are such that |V, | = |V, |1
sand t are the vertices in V,and V, respectively.

The vertex s Is the source and t is the sink

The multi stage graph is to find a minimum cost
path fromstot.

Approaches to Multistage Graph

e Forward Approach
« Backward Approach

Forward Approach

o Cost(l, J)=min{c(], I) +cost (i+1,)} | eV..;,<],I> € E

(15| W W L'E]

Cost(5,12)=0;
Cost(4,9)=4+ Cost(5,12)=4, .‘
Cost(4,10)=2+ Cost(5,12)=2;
Cost(4,11)=5+ Cost(5,12)=5; MERT) STARE SRAPH
Cost(3,6)=min{6+cost(4,9), 5+cost(4,10)}=min{10,7}=7
Cost(3,7)=min{4+cost(4,9), 3+cost(4,10)}=min{8,5}=5
Cost(3,8)=min{5+cost(4,10),6+cost(4,11)}=min{7,11}=7
Cost(2,2)=min{4+cost(3,6),2+cost(3,7),1+cost(3,8)}=min{11,7,8}=7
Cost(2,3)=min{2+c0st(3,6),7+cost(3,7)}=min{9,12}=9
Cost(2,4)=11+cost(3,8)=18
Cost(2,5)=min{11+cost(3,7), 8+cost(3,8)}=min{16,15}=15
Cost(1,1)=min{9+cost(2,2),7+cost(2,3),3+cost(2,4),2+cost(2,5}
=min{16,16,21,17}=16

Shortest path 1-2-7-10-12
Cost(i, j)=min { c(j, I) +cost (i+1,)} | €V;,;,<],I> € E

Algorithm

Fgraph (G, K, n, P)

{
Cost[n]:= 0.0;
forj:=n-1to 1step-1do
{

Let r be a vertex such that <j, r> is an edge of G and C[j, r] + cost[r]
IS minimum; //r is the vertex in v, and j be the vertex in v,

Cost[j] := C]j, r] + Cost[r]; //taking the value of min. cost edge
dij] :=r;

}

P[1]:=1, P[K]:=n

forj:=2tok-1

Pl = d[PO-1]1;

Backward Approach

 bcost(l, |)=min{c(l,j)+bcost(i-1,)}, | € v; ;, <l,}>€E

Bcost(1,1)=0; N
Bcost(2,2)=9+bcost(1,1)=9;
Bcost(2,3)=7++bcost(1,1)=7,
Bcost(2,4)=3+bcost(1,1)=3;
Bcost(2,5)=2+bcost(1,1)=2;
Bcost(3,6)=min{4+bcost(2,2), 2+bcost(2,3)}=min{13,9}=9;
Bcost(3,7)=11
Bcost(3,8)=10
Bcost(4,9)=15
Bcost(4,10)=14
Bcost(4,11)=16
Bcost(5,12)=16

MULTI STAGE GRAPH

Algorithm

Algorithm BGraph (G, K, n, p)
// some function as FGraph

{

Bcost [1]:=0.0;
forj:=2tondo

{

/1 compute bcost[j].

Let r be such that <r, > is an edge of G and c[r,j]+ bcost[r] is minimum; //r
Isavertexinv,, and jisavertexinyv,

Bcost[j]=c|[r,j]+ bcost][r];

d[]=r;

}

// find a minimum cost path
p[1]:=1;
plk] :=n;

forj:=k-1to2do
p0l:=dlp[+11];

Multi Stage Graph

V1 V2 V3 V4 V5

4
8 10@ 192 @

283 R OB O
5 . ® B®11
® 12

(®)

Gate Questions

Q.No. 1

GATE CSE 2016 Set 2

The Floyd-Warshall algorithm for all-pair shortest paths computation is based on
o Greedy paradigm.

G Divide-and-Conquer paradigm.

G Dynamic Programming paradigm.

@ neither Greedy nor Divide-and-Conquer nor Dynamic Programming paradigm.

GATE CSE 2015 Set 1
Q. No. 2

Match the following:
List 1

(P) Prim’s algorithm for minimum spanning tree
(Q) Floyd-Warshall algorithm for all pairs shortest paths
(R) Mergesort
S) Hamiltonian circuit
5 O F-iiQ-i,R-ivS-i

List 2
O r-iq-i R-ivS-ii

HiBaptiracking O P-i,Q-iii, R-iv,S-i
(ii) Greedy method

(iii) Dynamic programming © P-i.Q-i R-ii, 5-iv
(

iv) Divide and conquer

GATE CSE 2011

Q. No. 3
An algorithm to find the length of the longest monotonically increasing sequence of

numbers in an array A[0:n-1] is given below.

Let L;, denote the length of the longest monotonically increasing sequence starting at

Ingexin the aray. Inidalize Ly4=1. 0 The algorithm uses dynamic programming paradigm

Forallisuchthat0 < i <n—2 @ The algorithm has a linear complexity and uses branch and bound paradigm

0 The algorithm has a non-linear polynomial complexity and uses branch and bound paradigm

I — { 1+ Liq lfﬂ[l] < A[H-l]
I L [
1 Otherwise () The algorithm uses divide and conquer paradigm

Finally, the length of the longest monotonically increasing sequence is max(Ly, Ly,

kg
Which of the following statements is TRUE?

Q.No. 4
GATE CSE 1998

Which one of the following algorithm design techniques is used in finding all pairs of
shortest distances in a graph?

9 Dynamic programming

9 Backtracking

9 Greedy

@ Divide and Conguer

GATE CSE 2015 Set 2

Q.No.5
Given below are some algorithms, and some algorithm design paradigms.

GROUF 1 GROUP 2

1. Dijkstra's Shortest Path i. Divide and Conquer : s :
o 1—4, 2—11, 3—1, 4—.

2. Floyd-Warshall algorithm to compute | ii. Dynamic Programming

all pairs shortest path e 1—u1, 2—1411, 3—14, 4—v.

3. Binary search on a sorted array iii. Greedy design e 1—12, 2—11, 3 —1, 4 —iv.

4 Backtracking search on a graph iv. Depth-first search G ; iii, 7 S 1-1-1 S i, 4 —p.

v. Breadth-first search

Match the above algorithms on the left to the corresponding design paradigm they
follow.

0.No. 6 GATE CSE 2009
. NO.

A sub-sequence of a given sequence is just the given sequence with some elements
(possibly none or all) left out. We are given two sequences X[m] and Y[n] of lengths m
and n, respectively with indexes of X and Y starting from 0.

We wish to find the length of the longest common sub-sequence (LCS) of X[m] and
¥[n] as I(m,n), where an incomplete recursive definition for the function I(i,j) to
compute the length of the LCS of X[m] and Y[n] is given below:

I(i.g) @, 1t either 1. = @ or j = ©

exprl, if i,j > @ and X[i-1] = ¥[j-1]

expr2, it i,j > @ and X[i1-1] # ¥Y[j-1]

The value of I(i, j) could be obtained by dynamic programming based on the correct
recursive definition of (i, j) of the form given above, using an array L[M, N], where M =
m+1 and N = n + 1, such that L[i, j] = I(i, j).

Which one of the following statements would be TRUE regarding the dynamic
programming solution for the recursive definition of (i, j)?

0 All elements of L should be initialized to 0 for the values of I(1, J) to be properly computed.
@ The values of (1)) may be computed in a row major order or column major order of L[M, NJ.
0 The values of |(1, J) cannot be computed in either row major order or column major order of L[M, N].

0 L[p, q] needs to be computed before L[r s] ifeitherp<rorg<s.

GATE CSE 2009

Q. No.7 | o | |
A sub-sequence of a given sequence is just the given sequence with some elements

(possibly none or all) left out. We are given two sequences X[m] and Y[n] of lengths m
and n, respectively with indexes of X and Y starting from 0.

We wish to find the length of the longest common sub-sequence (LGS) of X[m] and
Y[n] as I(m,n), where an incomplete recursive definition for the function |i,j) to
compute the length of the LCS of X[m] and Y[n] is given below;

Which one of the following options is correct?
1(1,7) =0, if either 1 =0 or j =0 0 oot =1~ 1))+
= exprl, 1f 1,7 > @ and X[1-1] = Y[]-1]
o : , O exprt=1j-1)
= expr2, 1f 1,7 > @ and X[1-1] # Y[]-1]
e expr2 =max(11— 1,7), (.] - 1))

Which one of the following options is correct? T
Q expr2 = max(Ii - 1,j- 1),/ (i,)

Q. No. 8

GATE CSE 2014 Set 2

Consider two strings A="gpqrr” and B = "pgprqrp”. Let x be the length of the longest
common subsequence (not necessarily contiguous) between Aand B and let y be the
number of such longest common subsequences between Aand B. Then x + 10y =

A)33 B)23 C)43 D)34 Answer

Correct Answer 1s 34

The LCS is of length 4. There are Y=3 LCS of length X=4 “gprr”, “pqrr”’ and gpqr

ALL PAIRS SHORTEST PATH

NMhat Is All Pairs Shortest Path Problem?

‘he all-pairs shortest path problem is the determination of
ne shortest distance between every pair of vertices in a
Iiven graph. We have to calculate the minimum cost to find
ne shortest path.

>rocedure to find the all pairs shortest path:

First we consider “G” as a directed graph

The cost of the graph is the length or cost of each
edges and cost(i,i)=0

If there is an edge between | and | then cost(i,|)=cost of the
edge from i to] and if there is no edge then cost(l, J)= «

Need to calculate the shortest path/ cost between any two
nodes using intermediary nodes.

The following equation is used to calculate the minimum
cost Ak(i,j)=min{Ak1(i,j), Ak1(i,k)+Ak1(k,))}

\lgorithm of All Pairs Shortest Path

\Igorithm AllPaths(cost, A, n)
fori:=1ton do
forj:=1tondo
All, J]:=cost][i,j];
for k :=1to n do

fori:=1ton do
forj:=1tondo
Alij]:==min(A[i,j],Ali,K]+A[K,]];

xample:

Here, A0=Cost=

2
13 0.
Vhen we calculate Al will omit column 1 and row 1
Nnd calculate cost for rest of the 4 element.

Al(2,3)=min{Al-1(2,3), A1 (2,1)+ Al-1(1,3)}
=min{2,17} =2

Al(3,2)=min{Al-1(3,2), A1 (3,1)+ Al-1(1,2)}
=min{«,7} =7

11°
Al=

W oo
<N O N

2
0.

Now we will calculate A2
A2(1,3)=min{Az1(1,3), Az1(1,2)+ A21(2,3)}
=min{11,6}
=6
A2(3,1)=min{Az1(3,1), AZ1(3,2)+ A21(2,1)}
=min{3,13}
=3

A2=

w oo
<N O A
O N O

Now we will calculate A3
A3(1,2)=min{A31(1,2), A31(1,3)+ A31(3,2)}
=min{4,13}
=4
A3(2,1)=min{A31(2,1), A31(2,3)+ A31(3,1)}
=min{6,5}
=5

A=

w U1 o
<N O A
O N O

3 A
11 1
> 2
O 3

11

= Fiy
' 1
> 2

lgorithm AllPaths(cost, A, n)

fori:=1tondo Algorlthm

for j=1tondo
All, j]:=cost|i, j];

for k:=1tondo

for i:=1tondo

for j=1tondo
All, jI:== min (A[l, J], All, K]+A[K, J]);

\pplications of All Pairs Shortest Path

Road Networking
Network Routing
~light
Reservations
Driving

Directions

