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Objectives

• Introduction to Dynamic Programming
• Longest Common Subsequence 
• Shortest Path Problems

– All Pairs Shortest Path
– Travelling Sales Person Problem
– Multi-Stage Graphs

• Previous Gate Questions
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Introduction
• Dynamic Programming is an algorithm design method that can be 

used when the solution to a problem may be viewed as the result 
of a sequence of decisions.

• One way to solve problems for which it is not possible to make a 
sequence of stepwise decisions leading to an optimal decision 
sequence is to try out all possible decision sequences. 

• We could enumerate all decision sequences and then pick out the 
best. 

• Dynamic programming often drastically reduces the amount of 
enumeration by avoiding the enumeration of some decision 
sequences that cannot possibly be optimal. 

• In dynamic programming an optimal sequence of decisions is 
arrived at by making explicit appeal to the Principle of Optimality. 

• This principle states that an optimal sequence of decisions has the 
property that whatever the initial state and decision are, the 
remaining decisions must constitute an optimal decision sequence 
with regard to the state resulting from the first decision.



Dynamic Programming

• Well known algorithm design techniques:.
– Divide-and-conquer algorithms

• Another strategy for designing algorithms is dynamic  
programming.
– Used when problem breaks down into recurring small  

subproblems

• Dynamic programming is typically applied to 
optimization problems. In such problem there can be 
many solutions. Each solution has a value, and we  
wish to find a solution with the optimal value.



Divide-and-conquer –
Example1



Example 2: Fibonacci numbers
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• Recall definition of Fibonacci numbers:

F(n) = F(n-1) + F(n-2)  
F(0) = 0
F(1) = 1

Series:   0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, …

• Computing the nth Fibonacci number recursively (top-down):

F(n)
F(n-1) +

F(n-2) + F(n-3) F(n-4)

F(n-2)

F(n-3) +

...



Fibonacci Numbers

Running time complexity becomes exponential 



DP Approach: Fibonacci Numbers

• We can calculate Fn in linear time by remembering  
solutions to the solved subproblems – dynamic  
programming

• Compute solution in a bottom-up fashion

• In this case, only two values need to be  
remembered at any time



Difference between DP and Divide-and-Conquer

• Using Divide-and-Conquer to solve these
problems is inefficient because the same
common subproblems have to be solved many
times.

• DP will solve each of them once and their  
answers are stored in a table for future use.



Applications of Dynamic  Programming

• Longest common subsequence
• Shortest path problems

• Multi Stage Graphs
• All Pair Shortest Path
• Travelling Sales Person Problem

• 1/0 Knapsack
• Reliability Design
• Matrix chain multiplication
• Optimal Merge portions
• Mathematical optimization
• Optimal Binary Search Tree



Longest Common Subsequence

The longest common
subsequence (LCS) problem is the problem of
finding the longest subsequence common to all
sequences in a set of sequences



Subsequences
• A subsequence is a sequence that appears in the same  

relative order, but not necessarily contiguous.
• In LCS ,we have to find Longest Common

Subsequence that is in the same relative order.
• String of length n has 2^n different possible  

subsequences.
• E.g.—
• Subsequences of “ABCDEFG”.
• “ABC”,”ABG”,”BDF”,”AEG”,’ACEFG”,…….
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Common Subsequences
Suppose that X and Y are two sequences  
over a set S.
X: ABCBDAB  
Y: BDCABA  
Z: BCBA
We say that Z is a common subsequence  
of X and Y if and only if
• Z is a subsequence of X
• Z is a subsequence of Y 3



The Longest Common  
Subsequence Problem

Z= (B,C,A,B) Length 4
Z= (B,D,A,B) Length 4

Given two sequences X and Y over a set S,  
the longest common subsequence problem  
asks to find a common subsequence of X  
and Y that is of maximal length.
Z= (B,C,A) Length 3

Longest

X: ABCBDAB  Y: BDCABA



LCS Notation

Let X and Y be sequences.

We denote by LCS(X, Y) the set of  longest 
common subsequences of X and  Y.

LCS(X,Y)
Functional notation,  
but not a function



• A Brute-force solution:
• Enumerate all subsequences of X
• Test which ones are also subsequences of Y
• Pick the longest one.

• Analysis:
• If X is of length n, then it has 2n 

subsequences
• This is an exponential-time algorithm!
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A Poor Approach to the LCS  
Problem



Dynamic Programming for LCS

Let us try to develop a dynamic  
programming solution to the LCS problem.



• Example Input strings:
• a b c d a f
• a c b c f
• Solution:
• Longest common subsequence = a b c f
• Length = 4
• Pseudocode:
• If input[i] == input[j]
• T[i][j] = T[i-1][j-1] + 1;
• Else
• T[i][j] = MAX { T[i-1][j],  T[i][j-1] }

a b c d A f

0 0 0 0 0 0 0

a 0 1 1 1 1 1 1

c 0 1 1 2 2 2 2

b 0 1 2 2 2 2 2

c 0 1 2 3 3 3 3

f 0 1 2 3 3 3 4

Dynamic Programming for LCS



Solution



Procedure
Let X and Y be sequences.
Let c[i,j] be the length of an element in LCS(Xi, Yj).

c[i,j] =



Dynamic Programming
Solution

• Define L[i,j] to be the length of the longest common  
subsequence of X[0..i] and Y[0..j].

• L[i,j-1] = 0 and L[i-1,j]=0, to indicate that the null  
part of X or Y has no match with the other.

• Then we can define L[i,j] in the general case as  
follows:
1. If xi=yj, then L[i,j] = L[i-1,j-1] + 1 (we can add this  

match)
2. If xi≠yj, then L[i,j] = max{L[i-1,j], L[i,j-1]} (we  

have no match here)
X:ABCB
Y:BDCA LCS:BC



Example

Start at b[m,n]. Follow the arrows. Each  
diagonal array gives one element of the LCS.
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p q p r q r p
0 0 0 0 0 0 0 0

q 0 0 1 1 1 1 1 1
p 0 1 1 2 2 2 2 2
q 0 1 2 2 2 3 3 3
r 0 1 2 2 3 3 4 4
r 0 1 2 2 3 3 4 4

qprr

X: pqprqrp Y: qpqrr



ALGORITHM  LCS(X,Y)
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m  length[X]  
n  length[Y]

for i  1 to m do  
c[i,0]  0

for j  1 to n do  
c[0,j]  0



LCS(X,Y)
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for i  1 to m do
for j  1 to n do

if xi = yj
c[i, j]  c[i-1, j-1]+1  

“D” //diagonal b[i, j] 
else

if c[i-1, j]  c[i, j-1]
c[i, j]  c[i-1, j]
b[i, j]  “U” //up 

else
c[i, j]  c[i, j-1]
b[i, j]  “L”  //left 

return c and b



Analysis of LCS Algorithm

• We have two nested loops
• The outer one iterates m times
• The inner one iterates n times
• A constant amount of work is done inside  

each iteration of the inner loop
• Thus, the total running time is O(nm)



usage

• Biological applications often need to  
compare the DNA of two (or more)  
different organisms.

• We can say that two DNA strands are
similar if one is a substring of the  
other.



Shortest Path Problem
-All Pair Shortest Path
-Travelling Sales Person Problem
-Multi-stage Graph



All Pair Shortest Path

• The all pair shortest path algorithm is also 
known as Floyd’s algorithm is used to 
find shortest graph distances between 
every pair of vertices in a  given graph. 

• As a result of this algorithm, it will generate a 
matrix, which will represent the minimum 
distance from any node to all other nodes in 
the graph.



Description

• All Pair Shortest Path Floyd Alg.pptx



Traveling Salesperson Problem
• Let G = ( V, E) be a directed graph with edge costs Cij. Cij

is defined such that Cij > 0 for all i and j and Cij = ∞							
if < i,j > ∉	 E. 

• Let  |V| = n and assume n > 1. 
• A tour of G is a directed cycle that includes every 

vertex in V. 
• The cost of a tour is the sum of the cost of the edges 

on the tour.
• The traveling salesperson problem is to find a tour of 

minimum cost. 
– g(i, S)=min{cij+g(j, S-{j})} where jS



Example

• We need to find the cost of the tour g(1, {2,3,4} )



• g(1, {2,3,4}) = min { c12+g(2, {3,4}),
c13+g(3, {2,4}),  
c14+g(4, {2,3} }

• g(2, {3,4})=min {c23+g (3, {4}), c24+g(4, {3}) }
• g(3, {4})= min {c34+g(4, }  = 12+c41=12+8=20
• g(4, {3})=min {c43+g(3, )} = 9+c31=9+6=15
• g(2, {3,4})=min {c23+g (3, {4}), c24+g(4, {3}) }

=min {9+20, 10+15}
=min{29, 25}  =25

g(4, ) = c41=8



• g(3, {2,4})=min {c32+g (2, {4}), c34+g(4, {2}) }
• g(2, {4})= min {c24+g(4, }  = 10+8=18
• g(4, {2})=min {c42+g(2, )} = 8+5=13
• g(3, {2,4})=min {c32+g (2, {4}), c34+g(4, {2}) }

=min {13+18, 12+13}
=min{31, 25}  =25



• g(4, {2,3})=min {c42+g (2, {3}), c43+g(3, {2}) }
• g(2, {3})= min {c23+g(3, }  = 9+6=15
• g(3, {2})=min {c32+g(2, )} = 13+5=18
• g(4, {2,3})=min  {c42+g (2, {3}), c43+g(3, {2}) }

=min {8+15, 9+18}
=min{23, 27}  =23



• g(1, {2,3,4}) = min { c12+g(2, {3,4}),
c13+g(3, {2,4}),  
c14+g(4, {2,3} }

=min{10+25, 15+25, 20+23}
=min{35, 40, 43}
=35

The optimal path is 1-2-4-3-1





Multi Stage Graph



Multi-stage Graph

• A multistage graph is a directed graph in which the 
vertices are partitioned into k ≥ 2 disjoint sets Vi, 
1≤i ≤k. 

• <u, v> is an edge in E, then u Vi  and v  Vi+1  for 
some i, 1≤i ≤k. 

• The sets V1  and Vk are such that |V1 | = |Vk |=1
• s and t are the vertices in  V1 and Vk respectively.
• The vertex s is the source and t is the sink
• The multi stage graph is to find a minimum cost 

path from s to t.



Approaches to Multistage Graph

• Forward Approach
• Backward Approach



Forward Approach

• Cost(i, j)=min { c(j, l) +cost (i+1,l)} l Vi+1 , <j,l>  E



• Cost(5,12)=0;
• Cost(4,9)=4+ Cost(5,12)=4;
• Cost(4,10)=2+ Cost(5,12)=2;
• Cost(4,11)=5+ Cost(5,12)=5;
• Cost(3,6)=min{6+cost(4,9), 5+cost(4,10)}=min{10,7}=7
• Cost(3,7)=min{4+cost(4,9), 3+cost(4,10)}=min{8,5}=5
• Cost(3,8)=min{5+cost(4,10),6+cost(4,11)}=min{7,11}=7
• Cost(2,2)=min{4+cost(3,6),2+cost(3,7),1+cost(3,8)}=min{11,7,8}=7
• Cost(2,3)=min{2+cost(3,6),7+cost(3,7)}=min{9,12}=9
• Cost(2,4)=11+cost(3,8)=18
• Cost(2,5)=min{11+cost(3,7), 8+cost(3,8)}=min{16,15}=15
• Cost(1,1)=min{9+cost(2,2),7+cost(2,3),3+cost(2,4),2+cost(2,5}

=min{16,16,21,17}=16
Shortest path 1-2-7-10-12
Cost(i, j)=min { c(j, l) +cost (i+1,l)} l Vi+1 , <j,l>  E



Algorithm
• Fgraph (G, K, n, P)
• {
• Cost[n]:= 0.0;
• for j:= n-1 to 1 step -1 do
• {
• Let r be a vertex such that <j, r>  is an edge of G and C[j, r] + cost[r] 

is minimum;        //r is the vertex in vi+1 and j be the vertex in vi
• Cost[j] := C[j, r] + Cost[r];   //taking the value of min. cost edge
• d[j] := r;
• }
• P[1]:= 1 ,  P[k]:= n
• for j:= 2 to k-1
• P[j] = d[P[j-1]];
• }
•



Backward Approach

• bcost(i, j)=min{c(l,j)+bcost(i-1,l)}, l  vi-1, <l,j>E



• Bcost(1,1)=0;
• Bcost(2,2)=9+bcost(1,1)=9;
• Bcost(2,3)=7++bcost(1,1)=7;
• Bcost(2,4)=3+bcost(1,1)=3;
• Bcost(2,5)=2+bcost(1,1)=2;
• Bcost(3,6)=min{4+bcost(2,2), 2+bcost(2,3)}=min{13,9}=9;
• Bcost(3,7)=11
• Bcost(3,8)=10
• Bcost(4,9)=15
• Bcost(4,10)=14
• Bcost(4,11)=16
• Bcost(5,12)=16



Algorithm
• Algorithm BGraph (G, K, n, p)
• // some function as FGraph
• {
• Bcost [1]:= 0.0;
• for j:= 2 to n do
• {
• // compute bcost[j].
• Let r be such that <r, j>  is an edge of G and c[r,j]+ bcost[r] is minimum; //r 

is a vertex in vi-1 and j is a vertex in vi;

• Bcost[j]=c[r,j]+ bcost[r];
• d [j]:= r;
• }
• // find a minimum cost path
• p[1] := 1;              
• p[k] := n;
• for j := k-1 to 2 do 
• p[j]:= d[p[j+1]];
• }



Multi Stage Graph



Gate Questions



Q. No. 1



Q. No. 2 



Q. No. 3 



Q. No. 4 



Q. No. 5 



Q. No. 6 





Q. No.7 



The LCS is of length 4. There are Y=3 LCS of length X=4 “qprr”, “pqrr” and qpqr

A) 33   B) 23   C)43   D)34

Q. No. 8





ALL PAIRS SHORTESTPAIRS SHORTESTPATH



What is All Pairs Shortest

The all-pairs shortest path problem
the shortest distance between every
given graph. We have to calculate
the shortest path.

Shortest PathProblem?

Slide 2 out of

problem is the determination of
every pair of vertices in a

calculate the minimum cost to find



Procedureto find the all

First we consider “G” as a directed
The cost of the graph is the length 
edges and  cost(i,i)=0
If there is an edge between i and 
edge from i to j and if there is no 
Need to calculate the shortest path/ 
nodes  using intermediary nodes.
The following equation is used to 
cost  Ak(i,j)=min{Ak-1(i,j), Ak-1(i,k)

Slide 3 out of
10

all pairs shortest path:

directed graph
length or cost of each 

and j then cost(i,j)=cost of  the 
is no edge then cost(i, j)= ∞

path/ cost between any two 
nodes.

to calculate the minimum 
)+Ak-1(k,j)}



Algorithmof All Pairs Shortest
Algorithm AIIPaths(cost, A, n)
{  for i :=1to n do

for j :=1to n do  
A[i, j]:=cost[i,j];

for k :=1to n do
for i :=1to n do

for j :=1to n do  
A[i,j]:=min(A[i,j],A[i,k]+A[k,j];

Slide 4 out of
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Shortest Path

do  
A[i,j]:=min(A[i,j],A[i,k]+A[k,j];



Example:

Here, A0=Cost= 6
0 4 11

0 2
3 ∞ 0

When we calculate A1 will omit column 
and  calculate cost for rest of the 4 element.

A1(2,3)=min{A1-1 (2,3), A1-1 (2,1)+ 
=min{2,17} =2

A1(3,2)=min{A1-1 (3,2), A1-1 (3,1)+ 
=min{∞,7} =7

A1= 6
0 4 11

0 2
3 7 0

column 1 and row 1 
element.

(2,1)+ A1-1 (1,3)}

(3,1)+ A1-1 (1,2)}

Slide 5 out of
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Now we will calculate A2

A2(1,3)=min{A2-1 (1,3), A2-1 (1,2)+ 
=min{11,6}
=6

A2(3,1)=min{A2-1 (3,1), A2-1 (3,2)+ 
=min{3,13}
=3

A2= 6
0 4 6

0 2
3 7 0

(1,2)+ A2-1 (2,3)}

(3,2)+ A2-1 (2,1)}

Slide 6 out of
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Now we will calculate A3

A3(1,2)=min{A3-1 (1,2), A3-1 (1,3)+ 
=min{4,13}
=4

A3(2,1)=min{A3-1 (2,1), A3-1 (2,3)+ 
=min{6,5}
=5

A3= 5
0 4 6

0 2
3 7 0

(1,3)+ A3-1 (3,2)}

(2,3)+ A3-1 (3,1)}

Slide 7 out of
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Algorithm AllPaths(cost, A, n)

for i := 1 to n do
for   j:= 1 to n do

A[i, j]:=cost[i, j];

for  k := 1 to n do
for  i := 1 to n do
for   j:= 1 to n do

A[i, j]:= min (A[i, j], A[i, k]+A[k, j]);         

AlgorithmAlgorithm



Applicationsof All Pairs

Road Networking
Network Routing
Flight
Reservations
Driving
Directions

Slide 10 out of
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Shortest Path


