
Divide and Conquer Technique (Cont..)
&

Searching and Sorting Techniques
By
Prof. Shaik Naseera
Department of CSE
JNTUA College of Engg., Kalikiri

Objectives

• Strassen’s Matrix Multiplication
• Searching and Sorting Techniques

Matrix Multiplication: General Method

• The usual way to multiply two n x n matrices A
and B, yielding result matrix ‘C’ as follows :

for i := 1 to n do
for j :=1 to n do

c[i, j] := 0;
for K: = 1 to n do

c[i, j] := c[i, j] + a[i, k] * b[k, j];
• Which leads to T (n) = O (n3).

Divide and conquer approach
• The divide-and-conquer strategy suggests another way

to compute the
• product of two n x n matrices.
• For simplicity we will assume that n is a power of 2, i.e.

that there exists a nonnegative integer k such that n =
2k.

• In case n is not a power of two then enough rows and
columns of zeros may be added to both A and B so that
the resulting dimensions are a power of two.

• Imagine that A and B are each partitioned into four
square sub matrices, each sub matrix having
dimensions n/2 x n/2.

• Then the product AB can be computed by

• The recurrence relation for the above computation is

Solving of this recurrence relation gives O(n3).

Strassen’s Method
• Strassen’s insight was to find an alternative method for calculating the Cij, requiring

seven (n/2) x (n/2) matrix multiplications and eighteen (n/2) x (n/2) matrix
additions and subtractions:

• P = (A11 + A22) (B11 + B22)
• Q = (A21 + A22) B11
• R = A11 (B12 – B22)
• S = A22 (B21 - B11)
• T = (A11 + A12) B22
• U = (A21 – A11) (B11 + B12)
• V = (A12 – A22) (B21 + B22)
• C11 = P + S – T + V
• C12 = R + T
• C21 = Q + S
• C22 = P + R - Q + U.
• This method is used recursively to perform the seven (n/2) x (n/2) matrix

multiplications, then the recurrence equation for the number of scalar
multiplications performed is:

Complexity Analysis

• Recurrence Relation is

• Strassens Complexity.docx

Searching & Sorting Techniques

Searching & Sorting Techniques

• Searching Techniques:
– Linear Search
– Binary Search

• Sorting Techniques
– Selection Sort
– Bubble Sort
– Insertion Sort
– Heap Sort
– Quick Sort
– Merge Sort

Eg. 1 - Linear Search
• Recursively Look at an element (constant

work, c), then search the remaining
elements…

Linear Search Algorithm

Time complexity
• Best Case O(1)
• Worst Case T(n)=T(n-1)+1

=T(n-2)+2
=T(n-3)+3

= T(n-k)+k
when k=n, =T(0)+n

= O(n)
• T(n) = T(n-1) + c //“The cost of searching n

elements is the cost of looking at 1 element,
plus the cost of searching n-1 elements”

Eg. 1 – list of intermediates

Result at ith unwinding i

T(n) = T(n-1) + 1c 1

T(n) = T(n-2) + 2c 2

T(n) = T(n-3) + 3c 3

T(n) = T(n-4) + 4c 4

Linear Search

• An expression for the kth unwinding:
T(n) = T(n-k) + kc

Selection Sort

• One of the simplest techniques used is the
selection sort which works for the given lists
of item or data each time by selecting one
item at a time and orders along with placing it
in a correct position in sequence.

• This does not require extra storage space to
hold the lists.

• For selecting the item randomly this technique
is helpful.

Algorithm

• The following steps are used for processing the
elements in given lists of items.
Step 1: First finds the smallest element for the given lists

of item or data.
Step 2: Replaces that item or data in the first position.
Step 3: Next, again finds the smallest element among

the lists.
Step 4: Get replaced in second position.
Step 5: Same procedure is followed unless the elements

are sorted.
Step 6: Returns result.

Example:

Algorithm

Time complexity is O(n2)

Time complexity

• Advantages:
• Before sorting the given lists, the ordering of items or datas

can be initialized.
• This works even for the smaller lists of items or datas.
• Need no extra storage for the original lists of items.
• Disadvantages:
• For the large set of items or datas this sorting results in

poor efficiency.
• Requires an N-squared number steps for sorting items for

the given lists.
• Compared to selection sort, the quick sort is most efficient.

Bubble Sort
• Bubble Sort is a simple algorithm which is used to sort a given set

of n elements provided in form of an array with n number of elements.
Bubble Sort compares all the element one by one and sort them based on
their values.

• If the given array has to be sorted in ascending order, then bubble sort will
start by comparing the first element of the array with the second element,
if the first element is greater than the second element, it will swap both
the elements, and then move on to compare the second and the third
element, and so on.

• If we have total n elements, then we need to repeat this process
for n-1 times.

• It is known as bubble sort, because with every complete iteration the
largest element in the given array, bubbles up towards the last place or
the highest index, just like a water bubble rises up to the water surface.

• Sorting takes place by stepping through all the elements one-by-one and
comparing it with the adjacent element and swapping them if required.

Bubble Sort

• Compares the adjacent elements, if the
element on the right side is smaller then swap
their positions.

• This procedure continues till the end of the
list. i.e., end of the pass 1.

• At the end of the pass 1, the largest element
will be at the last position.

• The above procedure is repeated for n-1
times.

Complexity

• Complexity is O(n2)

Performance Improvement

The best case time complexity is O(n)

• If the elements are almost in sorted order,
bubble sort is more efficient sorting
technique.

Example: Insertion Sort

• Insertion sort is a comparison-based sorting
algorithm that we will use as an example to
understand some aspects of algorithmic analysis
and to demonstrate how an iterative algorithm
can be shown to be correct.

• The principle behind insertion sort is to remove
an element from an un-sorted input list and
insert in the correct position in an already-sorted,
but partial list that contains elements from the
input list.

Example: Sorting of cards
• We start with an empty left

hand
• Cards face down on the

table
• We remove one card at a

time from the table and
insert it into the correct
position in the left hand.

• To find the correct position,
we compare it with each of
the cards already in the left
hand, from right to left.

• At all the times, the cards
held in the left hand are in
sorted order.

Example2

Pseudo code

Time Complexity

• Best Case O(n)
• Average and worst case O(n2)

Previous Year Gate Questions

Q. NO. 1

Note: In case, if the binary search identifies the position 1 for the
element, then all the n elements next to the position of 1 should be
shifted one position to the right to accommodate the element. It
requires n operations. Therefore, there would not be any change.

Q. NO. 2

Q. NO. 3

Q. NO. 4

Q. NO. 5

Quick sort: pivot is left element, so worst case
Insertion Sort: Does not require element shifting. Only outer
loop executes. Best case.

Q. NO. 6

Q. NO. 7

Q. NO. 8

O(nlogn)

Q. NO. 9

Only one swap need in each pass

Q. NO. 10

Q. NO. 11

Q. NO. 12

Q. NO. 13

