Divide and Conquer Technique (Cont..)
&
Searching and Sorting Techniques

By
Prof. Shaik Naseera
Department of CSE

JNTUA College of Engg., Kalikiri

Objectives

 Strassen’s Matrix Multiplication
 Searching and Sorting Techniques

Matrix Multiplication: General Method

* The usual way to multiply two n x n matrices A
and B, yielding result matrix ‘C’ as follows :

fori:=1tondo
forj:=1tondo
cli, J] :=0;
forK:=1tondo
cli,)] :=cli, j] + aft, k] * blk, JI;
e Which leadsto T (n) = O (n3).

Divide and conquer approach

The divide-and-conquer strategy suggests another way
to compute the

product of two n x n matrices.

For simplicity we will assume that n is a power of 2, I.e.
tfgat there exists a nonnegative integer k such that n =
2K,

In case n is not a power of two then enough rows and

columns of zeros may be added to both A and B so that
the resulting dimensions are a power of two.

Imagine that A and B are each partitioned into four
square sub matrices, each sub matrix having
dimensions n/2 x n/2.

 Then the product AB can be computed by

11 AIZ 11 Blz Cll Clzﬁ
Ay An B: By Cy Cixn|

A1

altl a1z
Cu=AuB, + ApB)y 221 22

a3l a3z2
Co=AuB;y + AnB»

ad1 adz?
Cu=AyBy + AuBi —

A21

Cn=AuB, + AnBa

 The recurrence relation for the above computation is

b n=>2

T(n) = {STG) ten? > 2

Solving of this recurrence relation gives O(n3).

al3

az3

a3i3

a43

A2

ald

az4

a3d

add

A2Z

Strassen’s Method

Strassen’s insight was to find an alternative method for calculating the C;, requiring
seven (n/2) x (n/2) matrix multiplications and eighteen (n/2) x (n/2) matrix
additions and subtractions:

P=(Aq; +Ay) (By; +By)
Q=(Ay tAy) By
R=A; (Bi—By)

S = Ay (By-By)
T=(A;1 tAp) By

U= (Ay—-Ay) By +By)
V= (A = Ag) (By +By)
Cy =P+S-T+V
Co=R+T

Crn=Q+S
C,,=P+R-Q+U.

This method is used recursively to perform the seven (n/2) x (n/2) matrix

multiplications, then the recurrence equation for the number of scalar
multiplications performed is:

Complexity Analysis

e Recurrence Relation Is

b n=2
T(n) = {?T(%ﬁmﬂ n> 2

T() = an?(1 + 7/4 + (/42 + ... + (/9% + TXT(1)
< cn?(7/4)'8:n 4+ Tlgan ¢ a constant
= cnbsx""'hiz?“]"?ﬂz4 + nhﬂ’z?

= O(n'es:7) = O(n28)

 Strassens Complexity.docx

Searching & Sorting Techniques

Searching & Sorting Techniques

 Searching Techniques:
— Linear Search
— Binary Search

e Sorting Techniques
— Selection Sort
— Bubble Sort
— Insertion Sort
— Heap Sort
— Quick Sort
— Merge Sort

EQ. 1 - Linear Search

* Recursively Look at an element (constant
work, c), then search the remaining
elements...

Linear Search
Find '20'

N Y Y Y Y Y

10]50[30] 70] 0] 60 [20] 90 40

Linear Search Algorithm

i : Linear search for a value inside an arrav
Algorithm 1: Linear search for a value inside an arra

Data: A: The array to search for the value inside
n: The length of the array
value: The value to search for
Result: Returns the index of the element if found, or -1 otherwise
fori < 1tondo
if Afi] = value then
return i;
end
end
return —1:

Time complexity

e Best Case O(1)

e \Worst Case T(n)=T(n-1)+1
=T(n-2)+2
=T(n-3)+3

= T(n-k)+k
when k=n, =T(0)+n
= 0(n)
e T(nN) =T(n-1)+c //*The cost of searching n
elements Is the cost of looking at 1 element,
plus the cost of searching n-1 elements”

Eg. 1 — list of intermediates

Result at it" unwinding

T(n)=T(n-1) + 1c

T(n) =T(n-2) + 2C

T(n) =T(n-3) + 3c

T(n) =T(n-4) + 4c

Linear Search

« An expression for the kth unwinding:
T(n) = T(n-k) + kc

Selection Sort

* One of the simplest techniques used Is the
selection sort which works for the given lists
of item or data each time by selecting one
Item at a time and orders along with placing It
In a correct position in sequence.

* This does not require extra storage space to
hold the lists.

 For selecting the item randomly this technique
Is helpful.

Algorithm

* The following steps are used for processing the
elements in given lists of items.

Step

1: First finds the smallest element for the given lists

of item or data.

Ste

Ste
t

Ste
Ste

0 2: Replaces that item or data in the first position.

0 3: Next, again finds the smallest element among
ne lists.

0 4: Get replaced in second position.
0 5: Same procedure Is followed unless the elements

are sorted.

Ste

p 6: Returns result.

Example: selection Sort

W W W W W W

swap ——
;_i?zlaslm 87 EE|52|51|35I

swap——
13| ?:i 93'29 87 | 66 |52 |51 |3E l

swap

:
13|29|§_ ?zla? EE|52 |51 ‘35'

Swap—l

13| zal 36 |?§ 87 ‘EE |52 ‘51 |93 I
swap-—

13| zal 36'51 |3§ 66 | 52 |?2 |93 I

* no swap

13 | 29 | 36 51 52 66 | 87 72 S8
_.sta P
13| 29 | 36 | 51 52 66 | 87 | 72 98
* no swap
13 | 29 36 | 51 52 66 72 87 |98
13 | 29 36 | 51 52 66 72 87 |98

32 is smallest

29 iz smallest

36 is smallest

51 is smaliest

27 is smallest

&6 is smallest
no swappirng

72 is smallest

B7 is smmallest
no swapping

sorting completed

(L) wiresource.com

Algorithm

Algaorithm selection_sort(arr):
n = lenfarr)
for 1 in range(®,n-1):
min = 1
for j in range(i+i,n):
if arr[j] < arrimin]
min = j
if 1 !'= min:
temp = arr[i]
arr[i] = arrimin]
arr(min] = temp
return 8rr

Time complexity is O(n?)

Time complexity

Selection sort analysis

Iteration No. times array comparison performed
of outer loop during this iteration of outer loop

0 n-1

1 n-2

g n-3

last 1

So number of comparisons is
1+2+3+ ... +n-D+(n-1)=n*(n-1)/2= n¥2 - n2
As n gets large, the term n* dominates. We say the number if

comparisons is proportional to n* and that this is a guadratic
algorithm.

Advantages:

Before sorting the given lists, the ordering of items or datas
can be initialized.

This works even for the smaller lists of items or datas.
Need no extra storage for the original lists of items.
Disadvantages:

For the large set of items or datas this sorting results In
poor efficiency.

Requires an N-squared number steps for sorting items for
the given lists.

Compared to selection sort, the quick sort is most efficient.

Bubble Sort

Bubble Sort is a simple algorithm which is used to sort a given set

of n elements provided in form of an array with n number of elements.
Bubble Sort compares all the element one by one and sort them based on
their values.

If the given array has to be sorted in ascending order, then bubble sort will
start by comparing the first element of the array with the second element,
If the first element is greater than the second element, it will swap both
the elements, and then move on to compare the second and the third
element, and so on.

If we have total n elements, then we need to repeat this process
for n-1 times.

It is known as bubble sort, because with every complete iteration the
largest element in the given array, bubbles up towards the last place or
the highest index, just like a water bubble rises up to the water surface.

Sorting takes place by stepping through all the elements one-by-one and
comparing it with the adjacent element and swapping them if required.

Bubble Sort

Compares the adjacent elements, if the
element on the right side Is smaller then swap
thelir positions.

This procedure continues till the end of the
list. 1.e., end of the pass 1.

At the end of the pass 1, the largest element
will be at the last position.

The above procedure Is repeated for n-1
times.

Bubble Sorting

¥F YF ¥ ¥

First Pass
ﬁmpplq
5|1(4]| 2|8
ﬁmm
115|428
200 ol
114|5| 2|8
no Swap-,
1|14|2|5|8
1]14]2]|5|8

Second Pass
r““‘"’wl
11|4]|2]|5]|8

Jswapping
"
~1/14|2|5]|8

rnnmp
Mil2|a]5]8
' Shdebot A
E‘:l 2|4(5|8
S,

Third Pass
r""""‘wl
1 12| 4|58
m:r:mp-il
BRI 4| 5|8
lr-nnm.p-t
Al |2 4| 5|8
e swap-,
- ol [4|5|8
w124 58'

11 <17
{No Swapping)

17 <18
{Mo Swapping)

18< 26
{No Swapping)

26 < 23
(Swap then)

1 | 17 | 18 | 26 | 23
1 | 17 | 18 | 26 | 23
M| 17 | 18 | 26 | 23
1 | 17 | 18 | 26 | 23
1 | 17 | 18

(-

flag =@
fflag remains 0)

flag=0

flag=0

flag = 1

Complexity
o Complexity is O(n?)

| Procedure bubblesort { Lese array, member length_ol_array)
2 for 1=1 1o length_ol_array - 1;

taid

tor 1=1 to length_of_array - 1

4 if array [j] = array [j+1] then

5 temporary = array | j+1]
5 array| j+1| = array |||

7 array| 1| = temporary

= end of

9 end of | loop

| [end of | loop

|1 return array
|2 End of procedure

Performance Improvement

| Procedure bubblesort (List array, niember length_of_array)

2 for 1=1 to length_ol_array - 1; AP

3 for)=1 to length_ol_array - I;

4 if array [)] > array [j+1] then

5 temporary = array | j+1}

6 array|j+1| = array | j}

7 array| 3] = temporary L fag=1
S end if

Y end of) loop

I”' l'nl.l I.'II | I'I.N'!rll %ifﬂag:ﬂ,breakthelnﬂp

11 return array
12 End of procedure

The best case time complexity is O(n)

e |f the elements are almost in sorted order,
bubble sort is more efficient sorting
technique.

Example: Insertion Sort

* |nsertion sort is a comparison-based sorting
algorithm that we will use as an example to
understand some aspects of algorithmic analysis
and to demonstrate how an iterative algorithm
can be shown to be correct.

* The principle behind insertion sort is to remove
an element from an un-sorted input list and
Insert in the correct position in an already-sorted,
but partial list that contains elements from the
iInput list.

Example: Sorting of cards

We start with an empty left
hand

Cards face down on the
table

We remove one card at a
time from the table and
Insert it into the correct
position in the left hand.

To find the correct position,
we compare it with each of
the cards already in the left
hand, from right to left.

At all the times, the cards
held in the left hand are In
sorted order.

Example?

54 0 26 | 93 | 17 | 77 | 31 | 44 | 55 | 20 Assune o4 158 sorted
list of 1 item
E 54] 93 | 17 | 77 | 31 | 44 | 55 | 20 inserted 26
Ea 93 § 17 | 77 | 31 | 44 | 55 | 20 inserted 93
17 § 26 54 Fo3 | 77 | 31 | aa | 55 | 20 inserted 17
17 £ 26 f54 f 77 J 93 | 31 |4a |55 | 20 inserted 77
inserted 31
inserted 44
inserted 55

17 120 26 131 L as 054 P55 77 o3 inserted 20

Pseudo code

INSERTION-SORT(A)
1 forj = 2to A.length

2
3

G0 -] On Lh

key = AlJ]

// Insert A[j] into the sorted
sequence A[l..j — 1].

i = j—1

while i > O and A[i] > key
Ali + 1] = Ali]
i =i—1

Ali + 1] = key

Time Complexity

e Best Case O(n)
« Average and worst case O(n?)

Big O of Sorting Algorithms

Algorithm Time Time Time
Complexity Complexity Complexity
_ - (Best) (Average) (Worst)
~ BubbleSert O(m) O(n?) | On?)
InsertionSort O{n) OlY) | O

Selection Sort O(n?) Oin?) = On?)

Previous Year Gate Questions

Q.NO. 1

Which one of the following is the tightest upper bound that represents the number of
swaps required to sort n numbers using selection sort?

(A) O(log n)

(B) O(n)

(C) O(nLogn)

(D) O(n"2)

Answer: (B)
Explanation: To sort elements in increasing order, selection sort always picks the

maximum element from remaining unsorted array and swaps it with the last element in
the remaining array. So the number of swaps, it makes in n-1 which is O(n)

Q.NO. 2

GATE CSE 2003

The usual E}(ng) implementation of Insertion Sort to sort an array uses linear search
to identify the position where an element is to be inserted into the already sorted part
of the array. If, instead, we use binary search to identify the position, the worst case

running time will

@) remain B(n?)

@ become B(n(log n)?)
G become O (nlog n)

@ become O(n)

Note: In case, if the binary search identifies the position 1 for the
element, then all the n elements next to the position of 1 should be
shifted one position to the right to accommodate the element. It
requires n operations. Therefore, there would not be any change.

Q.NO. 3

GATE CSE 1999

A sorting technigue is called stable if:

o It takes O(nlog njtime

9 It maintains the relative order of occurrence of non-distinct elements
e It uses divide and conquer paradigm

Q It takes O(n) space

Q.NO. 4

GATE CSE 1994

The recurrence relation that arises in relation with the complexity of binary search is:

@ T'(n)=2T (%) + k, k is a constant

Q.NO.5
GATE CSE 1996

The average number of key comparisons done on a successful sequential search in
list of length n is

olmgn
0
0:
0
2

0.NO. 6 GATE CSE 2016 Set 2

Assume that the algorithms considered here sort the input sequences in ascending
order. If the input is already in ascending order, which of the following are TRUE?

I. Quicksort runs in © (n?) time
I. Bubblesort runs in © (n?) time
III. Mergesortrunsin © (n) time
IV. Insertion sort runs in © (n) time

0 I and II only

9 I and IIT only

Quick sort: pivot is left element, so worst case

© Iand IV only Insertion Sort: Does not require element shifting. Only outer
loop executes. Best case.

@ I and IV only

0.NO. 7 GATE CSE 2016 Set 2

Assume that the algorithms considered here sort the input sequences in ascending
order. If the input is already in ascending order, which of the following are TRUE?

I. Quicksort runs in © (n?) time
II. Bubblesortrunsin © (ng) time

III. Mergesortrunsin © (n) time
IV. Insertion sort runs in © (n) time
0 I and II only
9 I and IIT only

e IT and IV only

@ I and IV only

GATE CSE 2009

Q.NO. 8
What is the number of swaps required to sort n elements using selection sort, in the

worst case?
0 6(n)
O O(nlogn)
O o)

0 6(n*logn)

GATE CSE 2007

Q.NO. 9

Which of the following sorting algorithms has the lowest worst-case complexity?

@ Merge sort

e Bubble sort
9 (Quick sort

G Selection sort

O(nlogn)

GATE CSE 2006

Q.NO. 10
Which one of the following in place sorting algorithms needs the minimum number of
swaps?

o (Quick sort

9 Insertion sort

e Selection sort
Only one swap need in each pass

G Heap sort

GATE CSE 1999
Q.NO. 11

Suppose we want to arrange the n numbers stored in any array such that all negative

values occur before all positive ones. Minimum number of exchanges required in the
worst case is

Q MNone of the above

Explanation

Worst case happens when all the positive numbers occur before the negative numbers.

In this case, take a positive number from the left side and negative number from the right side and do
exchange operation. Then after n/2 exchanges ocperation, you will reach middle of the array and all the
negative value will be present before positive value.

20 In worst case n/2 exchanges required.

Q. NO. 12 GATE CSE 1998

GIVE the correct matching for the following pairs:

Group -1

(A) O(log n) Explanation
(B) O(n)

(C) O(nlogn)

(D) O(n?) Selection sort - O(n?)

Merge sort- O(nlogn)
Group - 2 Binary search - Oflogn)

(P) Selection Insertion sort: O(n)

(Q) Insertion sort So the comect parisA-RB-QC-SD-P
(R) Binary search
(S) Merge sort But this option 15 not present 5o you should go with option (B) as A- R and G - S only matches with (B).

O Ar-rRB-_PC-QD-5
©® A-rRB-PC-SD-Q
® ~A-PB-RC-sSD-Q

© A-PB-SC-RD-Q

Q.NO. 13 GATE CSE 1997

The correct matching for the following pairs is

A. All pairs shortest path 1. Greedy
B. Quick Sort 2. Depth-First Search
C. Minimum weight spanning tree 3. Dynamic Programming

D. Connected Components 4. Divide and Conguer

O A2B4C1D3
© A-3B4C1D-2
© A-3B-4C2D-1

@ A-4B-1C2D3

