Design and Analysis of Algorithms

Dr. Shaik Naseera Professor & HoD of CSE Department JNTUA College of Engineering, Kalikiri

Objectives

- Introduction
- Performance Measurement
 - Space Complexity
 - Time Complexity
- Asymptotic Notations
- Solving Recurrence Relations

Algorithm

- Definition
 - An *algorithm* is a finite set of instructions that accomplishes a particular task.
 - An algorithm is a step-by-step procedure for solving a problem in a finite amount of time.
- Criteria
 - input
 - output
 - definiteness: clear and unambiguous
 - finiteness: terminate after a finite number of steps
 - effectiveness: instruction is basic enough to be carried out

Study of Algorithms

- How to device an algorithm : Study of various design strategies to device new and useful algorithms
- How to validate the algorithm : Proof of Correctness
- How to analyze the algorithm : Measuring the space and time complexity
- How to test a program : Checking the correctness of the program and measuring the space and time it takes to compute the results.

Measurements

- Performance Analysis (machine independent)
 - space complexity: storage requirement
 - time complexity: computing time
- Performance Measurement (machine dependent)
- Performance analysis is also called as Priori Estimates
- Performance measurement is also called as Posteriori Testing

Space Complexity S(P)=C+S_P(I)

- Fixed Space Requirements (C) Independent of the characteristics of the inputs and outputs
 - instruction space
 - space for simple variables, fixed-size structured variable, constants
- Variable Space Requirements (S_P(I)) depend on the instance characteristic I
 - number, size, values of inputs and outputs associated with I
 - recursive stack space, formal parameters, return address

```
\begin{array}{l} \hline \text{Algorithm 1: Simple arithmetic function} \\ \hline \text{Algorithm abc}(a, b, c) \\ \{ \\ return a + b + b * c + (a + b - c) / (a + b) + 4.00; \\ \} \\ \hline \text{S}(abc)=3+0=3 \end{array}
```

Note: 4.00 does not require memory. If any element is declared as a constant, it requires memory. Ex:const int x;

Algorithm 2 : Iterative function for summing a list of numbers

```
Algorithm Isum(list, n)
{
    sum = 0;
    for (i = 0; i<n; i++)
        sum += list [i];
    return sum;
}
```

 $S_{sum}(I) \ge (n+3)$

Recall: pass the address of the first element of the array & pass by value

```
Algorithm 3 : Recursive function for summing a list of numbers

Algorithm rsum(list, n)

{

if (n \leq 0) return 0.0

else return rsum(list, n-1) + list[n]; S_{sum}(I) = S_{sum}(n) > = 3(n+1)

}
```

Assumptions:

*Figure 1.1: Space needed for one recursive call of Algorithm 3:

Туре	Name	Number of Units
parameter: float	list []	1
parameter: integer	n	1
return address:(used internally)		1
TOTAL per recursive call		3

Time Complexity

•Time complexity is the <u>computational complexity</u> that describes the amount of time it takes to run an <u>algorithm</u>.

•Time complexity is commonly estimated by counting the number of elementary operations performed by the algorithm

•We Assume that each elementary operation takes a fixed amount of time to perform.

•Thus, the amount of time taken is the total number of elementary operations performed by the algorithm.

Time Complexity $T(P)=C+T_P(I)$

- Compile time (C) independent of instance characteristics
- run (execution) time T_P

Step Table Method

*Figure 1.2: Step count table for Program with iterative function

Statement	s/e	Frequency	Total steps
Algorithm sum(list, n)	0	0	0
{	0	0	0
s := 0;	1	1	1
i:=0;	1	1	1
for $i := 1$ to n do	1	n+1	n+1
s := s + list[i];	1	n	n
return s;	1	1	1
}	0	0	0
Total			2n+4

Recursive Function to sum of a list of numbers

Statement	s/e	Frequency		Total steps	
		n=0	n>0	n=0	n>0
Algorithm RSum(a, n)	0	-	-	0	0
{	0	0	0	0	0
if $(n \le 0)$ then	1	1	1	1	1
return 0.0;	1	1	0	1	0
else return RSum(a, n-1)+a[n];	1+x	0	1	0	1+x
}	0	-	-	0	0
Total				2	2+x
				x=t _{Rsun}	(n-1)

$$\iota RSum(n) = \begin{cases} 2 & \text{if } n \le 0\\ 2+x & \text{if } n > 0 \end{cases}$$

Matrix Addition

Statement	s/e	Frequency	Total steps
Algorithm add (a, b, c, m,n)	0	0 0	0
{	0		0
for i:= 1 to m do	1	m+1	m+1
for j:= 1 to n do	1	m• (n+1)	mn+m
c[i][j] := a[i][j] + b[i][j];	1	m• n	mn
}	0	0	0
Total			2mn+2m+1

Printing of a Matrix

Statement	s/e	Frequency	Total steps
	_		
Algorithm print_matrix(a, r, c)	0	0	0
{	0	0	0
for $i := 1$ to r do	1	r+1	r + 1
{ for $j := 1$ to c do	1	r•(c+1)	rc + r
Print(a[i][j]);	1	r∙C	rc
Print("\n");	1	r	r
}	0	0	0
}	0	0	0
Total			2rc+3r+1

Matrix multiplication function

Statement	s/e	Frequency 7	Total steps
Algorithm mult(a, b, c, M)	0	0	0
{	0	0	0
for i:= 1 to M do	1	M+1	M + 1
for j:= 1 to M do	1	$M \bullet (M+1)$	$M^2 + M$
$\{ c[i][j] = 0; \}$	1	M. M	M^2
for i:= k to M do	1	M.M.(M+1)	$M^{3} + M^{2}$
c[i][j] := c[i][j] + a[i][k] * b[k][j];	0	M.M.M	M ³
}	0	0	0
}	0	0	0
Total		2M ³ +3	M ² +2M+1

Asymptotic Notations

- Big Oh (O)
- Big Omega (Ω)
- Theta (O) Notation
- Small oh (o)
- Small Omega (ω)

Big Oh Notation (O)

- Definition
 f(n) = O(g(n)) iff there exist positive constants c and n₀
 such that f(n) ≤ cg(n) for all n, n ≥ n₀.
- Examples
 - 3n+2=O(n) /* $3n+2\leq 4n$ for $n\geq 2$ */
 - 3n+3=O(n) /* $3n+3\leq 4n$ for $n\geq 3$ */
 - 100n+6=O(n) /* 100n+6≤101n for n≥6 */
 - $10n^2+4n+2=O(n^2) /* 10n^2+4n+2 \le 11n^2$ for $n \ge 5 */$
 - $6^{*}2^{n}+n^{2}=O(2^{n})$ /* $6^{*}2^{n}+n^{2}\leq 7^{*}2^{n}$ for $n\geq 4^{*}/2^{n}$

- O(1): constant
- O(n): linear
- O(n²): quadratic
- O(n³): cubic
- O(2ⁿ): exponential
- O(logn)
- O(nlogn)

Figure 1: Plot of function values

19

Big Omega (Ω) Notation

 The function f(n)=Ω (g(n)) iff there exists positive constants c and n₀ such that f(n) ≥ c g(n) for all n ≥ n_{0.}

Examples

Theta Notation (Θ)

- The function $f(n) = \Theta(g(n))$ iff there exists positive constants c_1, c_2 and n_0 such that $c_1g(n) \le f(n) \le c_2g(n)$ for all $n, n \ge n_0$.

Examples:

- $3n+2=\Theta(n)$ //3n+2 ≥ 3n for all n ≥ 2 and 3n+2≤4n for all n ≥2, so 3n ≤ 3n+2 ≤ 4n for n ≥ 2, c₁=3, c₂=4, n₀=2
- $-3n+3=\Theta(n)$ /* $3n \le 3n+3 \le 4n$ for $n\ge 2$ */
- $-100n+6=\Theta(n)$ /* 100n \le 100n+6 \le 101n for n \ge 6 */
- − $10n^2+4n+2=\Theta(n^2) /*10n^2 \le 10n^2+4n+2 \le 11n^2$ for $n \ge 5 * /$
- $-6^{*}2^{n}+n^{2}=\Theta(2^{n}) / *2^{n} \le 6^{*}2^{n}+n^{2} \le 72^{n}$ for $n \ge 4^{*}/2^{n}$

Asymptotic notation

Figure 2: Graphic examples of Θ , O, and Ω .

Little oh (o) Notation

- The function f(n) = o(g(n)) iff

$$\lim_{n\to\infty}\frac{f(n)}{g(n)}=0$$

Examples:

- $3n+2=0(n^2)$ // $\lim_{n\to\infty}\frac{3n+2}{n^2}=\lim_{n\to\infty}(\frac{3n}{n^2}+\frac{2}{n^2})=0$
 - Little oh is a method of expressing the upper bound on the growth rate of the algorithms running time which may or may not be asymptotically tight therefore little oh is also called a loose upper bound.
 - We use little oh notation to denote upper bound that is asymptotically not tight.

Little Omega (ω) Notation

– The function $f(n) = \omega(g(n))$ iff

$$\lim_{n\to\infty}\frac{g(n)}{f(n)}=0$$

Examples:

- $3n+2=\omega(1)$ //Here f(n)=3n+2 and g(n)=1 so $\lim_{n\to\infty}\frac{1}{3n+2}=0$
 - Little ω is a method of expressing the lower bound on the growth rate of the algorithms running time which may or may not be asymptotically tight therefore little ω is also called a loose lower bound.
 - We use little $\boldsymbol{\omega}$ notation to denote lower bound that is asymptotically not tight.

Solving of Recurrence Relation

• solving recurrence relation.pdf

Previous Gate Questions

Consider the following three claims

1. $(n + k)^m = \Theta(n^m)$, where k and m are constants 2. $2^{n + 1} = O(2^n)$ 3. $2^{2n + 1} = O(2^n)$

Which of these claims are correct?

- (A) 1 and 2
- (B) 1 and 3
- (C) 2 and 3
- (D) 1, 2, and 3

Answer: (A)

Explanation: $(n + k)^m$ and $\Theta(n^m)$ are asymptotically same as theta notation can always be written by taking the leading order term in a polynomial expression.

Previous Gate Questions

$$T(n) = T(n-1) + \log n$$

=[T(n-2)+log(n-1)]+log n
=[T(n-3)+log(n-2)]+log(n-1)+log n
= .

•

.

$$=T(n-k)+log(n-(k-1))+....+log n$$

=T(1)+log 2+log 3+...+log n
=T(1)+log(1)+log 2+...+log n //log 1 is 0
=log(1.2.3...n)
=log(n!) (note: n! upper bound is nⁿ)
=O(nlogn)

1)
$$T(m) = 2T(\frac{m}{2}) + m.$$

$$= 2 \left[2 \cdot T(\frac{m}{4}) + \frac{m}{2} \right] + m.$$

$$= 2^{2} T(\frac{m}{4}) + 2m$$

$$= 2^{2} \left[2 T(\frac{m}{3}) + (\frac{m}{4}) \right] + 2m.$$

$$= 2^{3} T(\frac{m}{3}) + K(\frac{m}{4}) + 2m.$$

$$= 2^{3} T(\frac{m}{2}) + Km.$$

$$m = 2^{K} \Rightarrow K = \log_{2} \frac{m}{2}$$

$$= 2^{K} T(\frac{m}{2}) + Km.$$

$$m = 2^{K} \Rightarrow K = \log_{2} \frac{m}{2}$$

$$= 2^{K} T(\frac{m}{2}) + Km.$$

$$= m \cdot T(m) + \log_{2} \frac{m}{2} + m.$$

$$= m \cdot C + m \cdot \log_{3} m.$$

$$= 0 (m \log_{3} m).$$

- Y.

2)

 $T(m) = 4T(2) + m^{-1}$ 3) $=+\left[4\cdot T\left(\frac{n}{4}\right)+\left(\frac{n}{2}\right)^{2}\right]+n^{2}$ $= 4^{2} T \left(\frac{n}{4} \right) + n^{2} + n^{r}.$ = 4² T (m) + 20° $=4^{2}[4T(\frac{m}{2})+(\frac{m}{2})]+2n^{2}.$ = 43 T (m) + 3 2 . = 4KT (m) +K. m. Here 2×= n => K= log_2 = 4 logo T(1) + logn: or. = nlog_g T(D + or light. = n T(1) + n logn. < c. nº logn. = O (n logn)

4)
$$T(n) = gT(n)_{1} + n^{2}$$

$$= g\left[gT(\frac{n}{2}) + (\frac{n}{2})^{2}\right] + n^{2}.$$

$$= g^{2}T(\frac{n}{2}) + 2n^{2} + n^{2}.$$

$$= g^{2}T\left[gT(\frac{n}{2}) + 4n^{2} + 2n^{2} + n^{2}.$$

$$= g^{3}T(\frac{n}{23}) + (2^{3} - 1)n^{2}.$$
Substitute $n = 2^{3} + 2 \log_{2} n$

$$= g^{\log_{2} n^{2}}T(n) + (n - 1)n^{2}.$$

$$= 2^{\log_{2} n^{2}}T(n) + n^{3} - n^{2}.$$

$$= n^{3} \cdot 1 + n^{3} - n^{2}.$$

$$= 2n^{3} - n^{2}.$$

$$= 0(n^{3}).$$

$$T(m) \in T(m-2) + m^{2}$$

$$= T(m-4) + (m-2)^{2} + m^{2}.$$

$$= T(m-6) + (m-4)^{2} + (m-2)^{2} + m^{2}.$$

$$= T(m-6) + (m-4)^{2} + (m-2)^{2} + (m-0)^{2}.$$

$$= T(m-2k) + (m-2k)^{2} + \dots + m^{2}.$$

$$= T(m-2k) + (m-2k)^{2} + \dots + m^{2}.$$

$$= T(m) + m^{2} + 2^{2} + \dots + m^{2}.$$

$$= T(m + 1)^{2} + 2^{2} + \dots + m^{2}.$$

$$= \frac{m(m+1)^{2}(2m+1)}{6}$$

$$\leq c \cdot m^{2}.$$

$$= 0(m^{2}).$$

E

$$\begin{split} T(n) &= 2 * T(\sqrt{n}) + \log n \text{ and } T(1) = 1\\ \text{let } n &= 2^m\\ \Rightarrow T(2^m) &= 2 * T(\sqrt{2^m}) + \log(2^m)\\ \Rightarrow T(2^m) &= 2 * T(2^{m/2}) + m\\ \text{let } S(m) &= T(2^m)\\ \Rightarrow S(m) &= 2 * S(m/2) + m\\ \Rightarrow S(m) &= 2 * (2 * S(m/4) + m/2) + m\\ \Rightarrow S(m) &= 2^2 * S(m/2^2) + m + m \end{split}$$

By substituting further,

$$\Rightarrow S(m) = 2^k * S(m/2^k) + m + m + \dots + m + m$$

let $m = 2^k \Rightarrow S(m/2^k) = S(1) = T(2) = 2$
$$\Rightarrow S(m) = 2 + m(k - 1) + m$$

$$\Rightarrow S(m) = 2 + m.k$$

$$\Rightarrow S(m) = 2 + m \log m$$

$$\Rightarrow S(m) = O(m \log m)$$

$$\Rightarrow S(m) = T(2^m) = T(n) = O(\log n \log \log n)$$