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Objectives

• Introduction
• Performance Measurement

– Space Complexity
– Time Complexity

• Asymptotic Notations
• Solving Recurrence Relations
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Algorithm
• Definition

– An algorithm is a finite set of instructions that accomplishes a 
particular task.

– An algorithm is a step-by-step procedure for solving a problem 
in a finite amount of time.

• Criteria
– input
– output
– definiteness: clear and unambiguous
– finiteness: terminate after a finite number of steps
– effectiveness: instruction is basic enough to be carried out
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Study of Algorithms
• How to device an algorithm : Study of various 

design strategies to device new and useful 
algorithms

• How to validate the algorithm : Proof of 
Correctness

• How to analyze the algorithm : Measuring the 
space and time complexity

• How to test a program : Checking the 
correctness of the program and measuring the 
space and time it takes to compute the 
results. 4



Measurements

• Performance Analysis (machine independent)
– space complexity: storage requirement
– time complexity: computing time

• Performance Measurement (machine dependent)
• Performance analysis is also called as Priori Estimates
• Performance measurement is also called as Posteriori Testing
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Space Complexity
S(P)=C+SP(I)

• Fixed Space Requirements (C)
Independent of the characteristics of the inputs and outputs
– instruction space
– space for simple variables, fixed-size structured variable, constants

• Variable Space Requirements (SP(I))
depend on the instance characteristic I
– number, size, values of inputs and outputs associated with I
– recursive stack space, formal parameters, return address



Algorithm 1: Simple arithmetic function
Algorithm abc(a, b, c)
{

return a + b + b * c + (a + b - c) / (a + b) + 4.00;
}
S(abc)=3+0=3

Note: 4.00 does not require memory. If any element is declared as a constant, it requires memory. Ex:-
const int x;
Algorithm 2 : Iterative function for summing a list of numbers
Algorithm Isum(list, n)
{
sum = 0;
for (i = 0; i<n; i++)

sum += list [i];
return sum;

}      
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Sabc(I) = 0

Ssum(I) ≥ (n+3)
Recall: pass the address of the
first element of the array &
pass by value



Algorithm 3 : Recursive function for summing a list of numbers 
Algorithm rsum(list, n)
{

if (n ≤ 0) return 0.0
else return rsum(list, n-1) + list[n];

}

*Figure 1.1: Space needed for one recursive call of Algorithm 3:
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Type Name Number of Units 
parameter: float 
parameter: integer 
return address:(used internally) 

list [ ] 
n 

1 
1 
1 

TOTAL per recursive call  3 
 

 

Ssum(I)=Ssum(n)>=3(n+1)

Assumptions:



Time Complexity

•Time complexity is the computational complexity that describes 
the amount of time it takes to run an algorithm. 

•Time complexity is commonly estimated by counting the number 
of elementary operations performed by the algorithm

•We Assume that each elementary operation takes a fixed 
amount of time to perform. 

•Thus, the amount of time taken is the total number of elementary 
operations performed by the algorithm.
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Time Complexity

• Compile time (C)
independent of instance characteristics

• run (execution) time TP

10

T(P)=C+TP(I)



*Figure 1.2: Step count table for Program with iterative function

11

Statement s/e  Frequency  Total steps 
Algorithm sum(list, n) 
{ 
   s := 0; 
   i:=0; 
  for i := 1 to n do  

s:= s+ list[i]; 
  return s; 
} 

0     0             0 
0     0             0 
1     1             1 
1     1             1 
1     n+1           n+1 
1     n             n 
1     1             1   
0     0             0 

Total                    2n+4  
 

 

Step Table Method
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Statement s/e  Frequency  Total steps 
    n=0  n>0   n=0  n>0 

Algorithm RSum(a, n) 
{ 
  if (n≤0) then 
     return 0.0;   
 else return RSum(a, n-1)+a[n]; 
} 

0    -    -      0    0 
0    0    0      0   0 
1    1    1      1   1 
1    1    0      1   0 
1+x  0    1      0  1+x 
0    -    -      0   0  

Total                 2   2+x 
              x=tRsum(n-1) 

 

                                                                                                        

Recursive Function to sum of a list of numbers
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Statement s/e  Frequency        Total steps 

Algorithm add (a, b, c, m,n ) 
{ 

   
   for i:= 1 to m do  
     for j:= 1 to n do  
      c[i][j] := a[i][j] + b[i][j]; 
}     

0     0              0 
0     0              0 
 
1     m+1           m+1 
1     m•(n+1)      mn+m             
1     m•n         mn   
0     0              0    

Total                   2mn+2m+1 

 

 

Matrix Addition
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Printing of a Matrix

Statement s/e Frequency Total steps

Algorithm print_matrix(a, r, c)
{

for i:= 1 to r do 
{   for j:= 1 to c do 

Print(a[i][j]);
Print( “\n”);

}
}  

0 0 0
0 0 0
1 r+1 r + 1
1 r•(c+1) rc + r
1 r•c rc
1 r r
0 0 0
0 0 0

Total 2rc+3r+1



Matrix multiplication function
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Statement s/e  Frequency        Total steps

Algorithm mult(a, b, c, M) 
{

for i:= 1 to M do 
for j:= 1 to M do 
{    c[i][j] = 0;

for i:= k to M do 
c[i][j]  := c[i][j] +  a[i][k] * b[k][j];

}
}   

0     0              0
0     0              0
1              M+1           M + 1
1     M•(M+1)    M2 +M            
1     M. M          M2

1     M.M.(M+1)    M3 +M2

0     M.M.M       M3

0     0              0     
0     0              0

Total 2M3+3M2+2M+1



Asymptotic Notations

• Big Oh (O) 
• Big Omega (Ω)
• Theta (Ɵ) Notation
• Small oh (o) 
• Small Omega (ω)
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Big Oh Notation (O)

• Definition
f(n) = O(g(n)) iff there exist positive constants c and n0
such that f(n)  cg(n) for all n, n  n0.

• Examples
– 3n+2=O(n) /* 3n+24n for n2 */
– 3n+3=O(n) /* 3n+34n for n3 */
– 100n+6=O(n) /* 100n+6101n for n6 */
– 10n2+4n+2=O(n2) /* 10n2+4n+211n2 for n5 */
– 6*2n+n2=O(2n) /* 6*2n+n2 7*2n for n4 */
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• O(1): constant
• O(n): linear
• O(n2): quadratic
• O(n3): cubic
• O(2n): exponential
• O(logn)
• O(nlogn)
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Figure 1:Plot of function values
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Big Omega (Big Omega (ΩΩ) N) Notationotation

• The function f(n)=Ω (g(n)) iff there exists positive constants 
c and n0 such that f(n) ≥ c g(n) for all n ≥ n0.

Examples
3n+2= Ω (n) // 3n+2 ≥  3n for n1 
3n+3= Ω (n) // 3n+3 ≥  3n for n1 
100n+6= Ω (n) // 100n+6 ≥ 100n for n1 
10n2+4n+2= Ω (n2)    // 10n2+4n+2 n2 for n1 
6*2n+n2= Ω (2n) // 6*2n+n2 ≥ 6*2n for n1 
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Theta Notation (Ɵ)

– The function f(n)= Ɵ (g(n)) iff there exists positive 
constants c1, c2 and n0 such that c1g(n) ≤ f(n) ≤ c2g(n) for 
all n, n ≥ n0.

Examples:
– 3n+2=Ɵ(n)  //3n+2 ≥ 3n for all n  2 and 3n+2≤4n for all n 2, so  

3n ≤ 3n+2 ≤ 4n for n  2, c1=3, c2=4, n0=2

– 3n+3= Ɵ(n) /* 3n ≤ 3n+3 ≤ 4n for n2 */
– 100n+6= Ɵ (n) /* 100n ≤ 100n+6 ≤ 101n for n6 */
– 10n2+4n+2= Ɵ (n2) /*10n2≤ 10n2+4n+2 ≤11n2 for n5 */
– 6*2n+n2= Ɵ(2n) /* 2n ≤ 6*2n+n2 ≤7 2n for n4*/
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Asymptotic notationAsymptotic notation

Figure 2: Graphic examples of  and     . ,, O
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Little oh (o) Notation

– The function f(n)= o (g(n)) iff       

Examples:

• 3n+2=o(n2)    // 
– Little oh is a method of expressing the upper bound on the growth 

rate of the algorithms running time which may or may not be 
asymptotically tight therefore little oh is also called a loose upper 
bound. 

– We use little oh notation to denote upper bound that is asymptotically 
not tight. 
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Little Omega (ω) Notation

– The function f(n)= ω(g(n)) iff       

Examples:

• 3n+2= ω (1)    //Here f(n)=3n+2 and g(n)=1 so 
– Little ω is a method of expressing the lower bound on the growth rate 

of the algorithms running time which may or may not be 
asymptotically tight therefore little ω is also called a loose lower 
bound.

– We use little ω notation to denote lower bound that is asymptotically 
not tight. 
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Solving of Recurrence Relation

• solving recurrence relation.pdf
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Previous Gate Questions



Previous Gate Questions

T(n) =T(n-1)+log n
=[T(n-2)+log(n-1)]+log n

=[T(n-3)+log(n-2)]+log(n-1)+log n
= .

.

.
=T(n-k)+log(n-(k-1))+.....+log n
=T(1)+log 2+log 3+….+log n
=T(1)+log(1)+log 2+....+log n  //log 1 is 0
=log(1.2.3....n)
=log(n!)      (note: n! upper bound is nn)
=O(nlogn)   27
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