
Design and Analysis of Algorithms

Dr. Shaik Naseera
Professor & HoD of CSE Department
JNTUA College of Engineering, Kalikiri

1

Objectives

• Introduction
• Performance Measurement

– Space Complexity
– Time Complexity

• Asymptotic Notations
• Solving Recurrence Relations

2

Algorithm
• Definition

– An algorithm is a finite set of instructions that accomplishes a
particular task.

– An algorithm is a step-by-step procedure for solving a problem
in a finite amount of time.

• Criteria
– input
– output
– definiteness: clear and unambiguous
– finiteness: terminate after a finite number of steps
– effectiveness: instruction is basic enough to be carried out

3

Study of Algorithms
• How to device an algorithm : Study of various

design strategies to device new and useful
algorithms

• How to validate the algorithm : Proof of
Correctness

• How to analyze the algorithm : Measuring the
space and time complexity

• How to test a program : Checking the
correctness of the program and measuring the
space and time it takes to compute the
results. 4

Measurements

• Performance Analysis (machine independent)
– space complexity: storage requirement
– time complexity: computing time

• Performance Measurement (machine dependent)
• Performance analysis is also called as Priori Estimates
• Performance measurement is also called as Posteriori Testing

5

Space Complexity
S(P)=C+SP(I)

• Fixed Space Requirements (C)
Independent of the characteristics of the inputs and outputs
– instruction space
– space for simple variables, fixed-size structured variable, constants

• Variable Space Requirements (SP(I))
depend on the instance characteristic I
– number, size, values of inputs and outputs associated with I
– recursive stack space, formal parameters, return address

Algorithm 1: Simple arithmetic function
Algorithm abc(a, b, c)
{

return a + b + b * c + (a + b - c) / (a + b) + 4.00;
}
S(abc)=3+0=3

Note: 4.00 does not require memory. If any element is declared as a constant, it requires memory. Ex:-
const int x;
Algorithm 2 : Iterative function for summing a list of numbers
Algorithm Isum(list, n)
{
sum = 0;
for (i = 0; i<n; i++)

sum += list [i];
return sum;

}

7

Sabc(I) = 0

Ssum(I) ≥ (n+3)
Recall: pass the address of the
first element of the array &
pass by value

Algorithm 3 : Recursive function for summing a list of numbers
Algorithm rsum(list, n)
{

if (n ≤ 0) return 0.0
else return rsum(list, n-1) + list[n];

}

*Figure 1.1: Space needed for one recursive call of Algorithm 3:

8

Type Name Number of Units
parameter: float
parameter: integer
return address:(used internally)

list []
n

1
1
1

TOTAL per recursive call 3

Ssum(I)=Ssum(n)>=3(n+1)

Assumptions:

Time Complexity

•Time complexity is the computational complexity that describes
the amount of time it takes to run an algorithm.

•Time complexity is commonly estimated by counting the number
of elementary operations performed by the algorithm

•We Assume that each elementary operation takes a fixed
amount of time to perform.

•Thus, the amount of time taken is the total number of elementary
operations performed by the algorithm.

9

Time Complexity

• Compile time (C)
independent of instance characteristics

• run (execution) time TP

10

T(P)=C+TP(I)

*Figure 1.2: Step count table for Program with iterative function

11

Statement s/e Frequency Total steps
Algorithm sum(list, n)
{
 s := 0;
 i:=0;
 for i := 1 to n do

s:= s+ list[i];
 return s;
}

0 0 0
0 0 0
1 1 1
1 1 1
1 n+1 n+1
1 n n
1 1 1
0 0 0

Total 2n+4

Step Table Method

12

Statement s/e Frequency Total steps
 n=0 n>0 n=0 n>0

Algorithm RSum(a, n)
{
 if (n≤0) then
 return 0.0;
 else return RSum(a, n-1)+a[n];
}

0 - - 0 0
0 0 0 0 0
1 1 1 1 1
1 1 0 1 0
1+x 0 1 0 1+x
0 - - 0 0

Total 2 2+x
 x=tRsum(n-1)

Recursive Function to sum of a list of numbers

13

Statement s/e Frequency Total steps

Algorithm add (a, b, c, m,n)
{

 for i:= 1 to m do
 for j:= 1 to n do
 c[i][j] := a[i][j] + b[i][j];
}

0 0 0
0 0 0

1 m+1 m+1
1 m•(n+1) mn+m
1 m•n mn
0 0 0

Total 2mn+2m+1

Matrix Addition

14

Printing of a Matrix

Statement s/e Frequency Total steps

Algorithm print_matrix(a, r, c)
{

for i:= 1 to r do
{ for j:= 1 to c do

Print(a[i][j]);
Print(“\n”);

}
}

0 0 0
0 0 0
1 r+1 r + 1
1 r•(c+1) rc + r
1 r•c rc
1 r r
0 0 0
0 0 0

Total 2rc+3r+1

Matrix multiplication function

15

Statement s/e Frequency Total steps

Algorithm mult(a, b, c, M)
{

for i:= 1 to M do
for j:= 1 to M do
{ c[i][j] = 0;

for i:= k to M do
c[i][j] := c[i][j] + a[i][k] * b[k][j];

}
}

0 0 0
0 0 0
1 M+1 M + 1
1 M•(M+1) M2 +M
1 M. M M2

1 M.M.(M+1) M3 +M2

0 M.M.M M3

0 0 0
0 0 0

Total 2M3+3M2+2M+1

Asymptotic Notations

• Big Oh (O)
• Big Omega (Ω)
• Theta (Ɵ) Notation
• Small oh (o)
• Small Omega (ω)

16

Big Oh Notation (O)

• Definition
f(n) = O(g(n)) iff there exist positive constants c and n0
such that f(n)  cg(n) for all n, n  n0.

• Examples
– 3n+2=O(n) /* 3n+24n for n2 */
– 3n+3=O(n) /* 3n+34n for n3 */
– 100n+6=O(n) /* 100n+6101n for n6 */
– 10n2+4n+2=O(n2) /* 10n2+4n+211n2 for n5 */
– 6*2n+n2=O(2n) /* 6*2n+n2 7*2n for n4 */

17

• O(1): constant
• O(n): linear
• O(n2): quadratic
• O(n3): cubic
• O(2n): exponential
• O(logn)
• O(nlogn)

18

Figure 1:Plot of function values

19

nlogn

n

logn

Big Omega (Big Omega (ΩΩ) N) Notationotation

• The function f(n)=Ω (g(n)) iff there exists positive constants
c and n0 such that f(n) ≥ c g(n) for all n ≥ n0.

Examples
3n+2= Ω (n) // 3n+2 ≥ 3n for n1
3n+3= Ω (n) // 3n+3 ≥ 3n for n1
100n+6= Ω (n) // 100n+6 ≥ 100n for n1
10n2+4n+2= Ω (n2) // 10n2+4n+2 n2 for n1
6*2n+n2= Ω (2n) // 6*2n+n2 ≥ 6*2n for n1

20

Theta Notation (Ɵ)

– The function f(n)= Ɵ (g(n)) iff there exists positive
constants c1, c2 and n0 such that c1g(n) ≤ f(n) ≤ c2g(n) for
all n, n ≥ n0.

Examples:
– 3n+2=Ɵ(n) //3n+2 ≥ 3n for all n  2 and 3n+2≤4n for all n 2, so

3n ≤ 3n+2 ≤ 4n for n  2, c1=3, c2=4, n0=2

– 3n+3= Ɵ(n) /* 3n ≤ 3n+3 ≤ 4n for n2 */
– 100n+6= Ɵ (n) /* 100n ≤ 100n+6 ≤ 101n for n6 */
– 10n2+4n+2= Ɵ (n2) /*10n2≤ 10n2+4n+2 ≤11n2 for n5 */
– 6*2n+n2= Ɵ(2n) /* 2n ≤ 6*2n+n2 ≤7 2n for n4*/

21

Asymptotic notationAsymptotic notation

Figure 2: Graphic examples of and . ,, O

22

Little oh (o) Notation

– The function f(n)= o (g(n)) iff

Examples:

• 3n+2=o(n2) //
– Little oh is a method of expressing the upper bound on the growth

rate of the algorithms running time which may or may not be
asymptotically tight therefore little oh is also called a loose upper
bound.

– We use little oh notation to denote upper bound that is asymptotically
not tight.

23

0
)(
)(lim 

 ng
nf

n

0)23(lim23lim 222 


 nn
n

n
n

nn

Little Omega (ω) Notation

– The function f(n)= ω(g(n)) iff

Examples:

• 3n+2= ω (1) //Here f(n)=3n+2 and g(n)=1 so
– Little ω is a method of expressing the lower bound on the growth rate

of the algorithms running time which may or may not be
asymptotically tight therefore little ω is also called a loose lower
bound.

– We use little ω notation to denote lower bound that is asymptotically
not tight.

24

0
)(
)(lim 

 nf
ng

n

0
23

1lim 
 nn

Solving of Recurrence Relation

• solving recurrence relation.pdf

25

Previous Gate Questions

Previous Gate Questions

T(n) =T(n-1)+log n
=[T(n-2)+log(n-1)]+log n

=[T(n-3)+log(n-2)]+log(n-1)+log n
= .

.

.
=T(n-k)+log(n-(k-1))+.....+log n
=T(1)+log 2+log 3+….+log n
=T(1)+log(1)+log 2+....+log n //log 1 is 0
=log(1.2.3....n)
=log(n!) (note: n! upper bound is nn)
=O(nlogn) 27

5.

