Design and Analysis of Algorithms

Dr. Shaik Naseera
Professor & HoD of CSE Department
JNTUA College of Engineering, Kalikiri

Objectives

Introduction

Performance Measurement
— Space Complexity
— Time Complexity

Asymptotic Notations
Solving Recurrence Relations

Algorithm

Definition
— An algorithm is a finite set of instructions that accomplishes a
particular task.
— An algorithm is a step-by-step procedure for Solving a problem
In a finite amount of time.

Criteria
— Input
— output
— definiteness: clear and unambiguous
— finiteness: terminate after a finite number of steps
— effectiveness: instruction is basic enough to be carried out

Study of Algorithms

How to device an algorithm : Study of various
design strategies to device new and useful
algorithms

How to validate the algorithm : Proof of
Correctness

How to analyze the algorithm : Measuring the
space and time complexity

How to test a program : Checking the
correctness of the program and measuring the
space and time It takes to compute the
results.

Measurements

Performance Analysis (machine independent)

— space complexity: storage requirement

— time complexity: computing time
Performance Measurement (machine dependent)
Performance analysis is also called as Priori Estimates

Performance measurement is also called as Posteriori Testing

Space Complexity
S(P)=C+Sq(1)

Fixed Space Requirements (C)
Independent of the characteristics of the inputs and outputs

— Instruction space

— space for simple variables, fixed-size structured variable, constants
Variable Space Requirements (Sx(1))
depend on the instance characteristic |

— number, size, values of inputs and outputs associated with |

— recursive stack space, formal parameters, return address

Algorithm 1: Simple arithmetic function
Algorithm abc(a, b, ¢)

{
returna+b+b*c+(a+b-c)/(a+hb)+4.00;

} —
S(abc)=3+0=3 Sanc(l) =0

Note: 4.00 does not require memory. If any element is declared as a constant, it requires memory. Ex:-
const int x;

Algorithm 2 : Iterative function for summing a list of numbers

Algorithm Isum(list, n) S.,(D) > (n+3)
{sum = 0: F_’ecall: pass the address of the
for (i = 0; i<n; i++) first element of the array &
sum += list [i]; pass by value
return sum;

}

Algorithm 3 : Recursive function for summing a list of numbers
Algorithm rsum(list, n)

{

if (n <0) return 0.0
else return rsum(list, n-1) + list[n]; S..m(D=S,,(N)>=3(n+1)

Assumptions:

*Figure 1.1: Space needed for one recursive call of Algorithm 3:

Type Name | Number of Units
parameter: float list[] |1
parameter: integer n 1
return address:(used internally) 1
TOTAL per recursive call 3

Time Complexity

*Time complexity is the computational complexity that describes
the amount of time it takes to run an algorithm.

*Time complexity is commonly estimated by counting the number
of elementary operations performed by the algorithm

*\We Assume that each elementary operation takes a fixed
amount of time to perform.

*Thus, the amount of time taken is the total number of elementary
operations performed by the algorithm.

Time Complexity
T(P)=C+To(1)

e Compile time (C)
Independent of instance characteristics
 run (execution) time T,

Step Table Method

*Figure 1.2: Step count table for Program with iterative function

Statement s/le Frequency Total steps
Algorithm sum(list, n) 0 0 0
{ 0 0 0
s:=0; 1 1 1
1:=0; 1 1 1

fori:=1tondo 1 n+1 n+1
s:= s+ list[i]; 1 n n
return s; 1 1 1
} 0 0 0

Total 2n+4

Recursive Function to sum of a list of numbers

Statement s/le Frequency Total steps
n=0 n>0 n=0 n>0
Algorithm RSum(a, n) 0 - - 0 0
{ 0 0 0 0 O
If (n<0) then 1 1 1 1 1
return 0.0; 1 1 0 1 0
else return RSum(a, n-1)+a[n]; |1+x O 1 0 1+x
} 0 - - 0 O
Total 2 2+X
X=trsum(N-1)
2 ifn=20
(RSum(n) = {2 . ij{n >0

Matrix Addition

Statement sle Frequency Total steps

Algorithm add (a, b, ¢, m,n) 0 0 0

{ 0 0 0

for i:= 1to mdo 1 m+1 m+1
forj:=1tondo 1 me(n+1) mn+m

clili] := ali]bl + bLil0]; 1 men mn

} 0 0 0

Total 2mn+2m+1

13

Printing of a Matrix

Statement sle Frequency Total steps
Algorithm print_matrix(a, r, c) 0 0 0
{ 0 0 0
fori:=1tordo 1 r+1 r+1
{ forj;=1tocdo 1 re(ctl) rc+r
Print(a[i][j]); 1 reC rc
Print(“\n”); 1 r r
} 0 0 0
} 0 0 0
Total 2rc+3r+1

Matrix multiplication function

Statement s/le Frequency Total steps
Algorithm mult(a, b, ¢, M) 0 0 0
{ 0 0 0
fori:=1toMdo 1 M+1 M+ 1
forj;=1to M do 1 Me(M+1) M2 +M
{ Cc[i][j]=0; 1 M. M M?
fori:=kto M do 1 M.M.(M+1) M3 +M?
clilio] :=clilljl + a[il[k] * b[K][]];|0 MMM M3
} 0 0 0
} 0 0 0
Total 2M3+3M?+2M+1

Asymptotic Notations

Big Oh (O)

Big Omega (Q)
Theta (©) Notation
Small oh (0)

Small Omega (w)

Big Oh Notation (O)

* Definition
f(n) = O(g(n)) iff there exist positive constants ¢ and n,
such that f(n) <cg(n) for all n, n > n,,

o Examples
— 3n+2=0(n) /* 3n+2<4n for n>2 */
— 3n+3=0(n) /* 3n+3<4n for n>3 */

— 100n+6=0(n) /* 100n+6<101n for n>6 */
— 10n%+4n+2=0(n?) /* 10n*+4n+2<11n? for n>5 */
— 6*2"+n2=0(2") /* 6*2"+n2 <7*2" for n>4 */

O(1): constant
O(n): linear

O(n?): quadratic
O(n3): cubic
O(2"): exponential
O(logn)

O(nlogn)

Figure 1:Plot of function values

._ 1\2

-

60 |
50 —

40 —

[
% S
o
(@)
>S

30

| P, s €
| P = . ST N T

S S . NG
e on el B i - vaiiss S ediimgetd B e, 10QN

OF—%—¢— T i

0 I 2 P SIS o Bk g Bl CLTNE eBis

2 5 6 7 8 9 10

n — =

19

Big Omega (€2) Notation

« The function f(n)=Q (g(n)) iff there exists positive constants

c and nysuch that f(n) 2 c g(n) foralln > n,
Examples
3n+2=0Q(n) //3n+2 = 3n for n>1
3n+3=0Q(n) //3n+3 > 3n for n>1
100n+6=Q (n) // 100n+6 = 100n for n>1
10n?+4n+2=Q (n?) // 10n?+4n+2< n? for n>1
6*2"+n?= Q) (2" I/ 6*2"+n? > 6*2" for n>1

20

Theta Notation (©)

— The function f(n)= 6 (g(n)) iff there exists positive
constants ¢4, ¢, and nysuch that c,g(n) <f(n) < c,g(n) for
alln,n=n,

Examples:

— 3n+2=6(n) //3n+2 = 3n for alln > 2 and 3n+2<4n for all n >2, so
3n<3n+2 < 4nforn> 2, ¢,;=3, c,=4, ny=2

— 3n+3=06(n) /*3n <3n+3 <4n for n>2 */

— 100n+6=©6 (n) /*100n<100n+6 <101n for n>6 */

— 10n%+4n+2= 06 (n?) /*10n%< 10n°+4n+2 <11n? for n>5 */
— 6*2"+n?=0(2") /* 2"< 6*2"+n? <7 2" for n>4*/

21

c gl J#)
W o c&0
1] 72 (] § ';3 ?
HOEL Y £y = g () D 1) = Q)
@) ©

Figure 2: Graphic examplesof ~ ®, O, and ()

Little oh (0) Notation

— The function f(n)= o (g(n)) iff

Iimm—o
== g(n)
Examples:
e 3n+2=0(n?) // lm = limg+2) =0

— Little oh is a method of expressmg the upper bound on the growth
rate of the algorithms running time which may or may not be
asymptotically tight therefore little oh is also called a loose upper
bound.

— We use little oh notation to denote upper bound that is asymptotically
not tight.

Little Omega (w) Notation

— The function f(n)= w(g(n)) Iff

I|m 9(n) =0
()
Examples:
e 3n+2=w (1) //Here f(n)=3n+2 and g(n)=1so lim-——=0

— Little w is a method of expressing the lower bound on the growth rate
of the algorithms running time which may or may not be
asymptotically tight therefore little w is also called a loose lower
bound.

— We use little w notation to denote lower bound that is asymptotically
not tight.

Solving of Recurrence Relation

e solving recurrence relation.pdf

Previous Gate Questions

Consider the following three claims

1. (n + k)" = 6(n™), where k and m are constants
5. EI'I = G{En}
3. 21” i R D(zﬂ}

Which of these claims are correct ?

(A) 1 and 2
(B) 1 and 3
(C)2and 3
(D) 1,2, and 3

Answer: (A)

Explanation: (n + k)™ and @(n™) are asymptotically same as theta notation can always be
written by taking the leading order term in a polynomial expression.

Previous Gate Questions

T(n) =T(n-1)+logn
=[T(n-2)+log(n-1)]+log n
=[T(n-3)+log(n-2)]+log(n-1)+log n

=T(n-k)+log(n-(k-1))+.....+log n
=T(1)+log 2+log 3+....+log n
=T(1)+log(1)+log 2+....+logn //log 1is O
=log(1.2.3....n)

=log(n!) (note: n! upper bound is n")
=0(nlogn)

5
_ ‘fJTLﬁL;}A"

=

= }LTL%J“B'FE.NF_“

e i
e ST

Y Lp IRl &
= o TSR

=e
,ﬁ.ﬂ""@aﬂ'n

o ¥

——

= ¥y &

)
eV =ETEnmES)RE B

=7 (DN Cr-le-DY 2 B

) et M= = v

=8 s YR

2 TL{) A Lnﬂ_{‘ﬂ” .__i...}-«) - -~ =)

= ey S Gt ST

>) T (my = & T LR A
o A0 v
=*E4‘TL‘§>*%—3’JI*“'
- - o
= A= G 2 - M ST
)
= c‘ﬂ?"rt"i}r? A 205"
gt N Y
=& TaT LN & 14 2w

i
2 A& LN A wan -
=

= &4 7 L%}—%%-ﬂr"-
Meng =X - = kz=lgbh

_ q}ﬂa{}

—

W S hi’;&h-ﬂ?-
e rr
- B T T wisRE

e 1"?’{.;:39&1"31,

it

O (0 Legn)

—_—

1
e
|

‘,_j"l-a-

i ‘%":-— E‘E.TE—%B_FLIE‘\?—} T g

» o e
S S v S T e

3 —_
= %TL%E‘F\:‘#—!T]

| - %y a0 v
- E—:;Q)

a=-a2% == .“-"'“QC%'E}

2 BL Ly 4 (p-D W

B

298Y (5 x o P

&

o -
B ok
= qURLl TEy S aT = M

=) "Tf_hﬁ*-“r{‘ﬂ—z"}-—”rﬂ“"

=
= e B p ey Se vy
‘v-.
- T (wvm-6) - L“f"*“‘-l‘i‘-w—'q— Lao— 2 +~._.:-;" _

i o 8
-~ Fln-62 +F (r—u3d 4 Ln—23 4 (m-0)

N
?—:-D;.‘!IJEFLF"'
= o
= Flimeoy) ¥ (W=2) g ~- -7
= =)
-_? M= =)
=
' _%?" F_ﬂw‘.
— i_""‘l"}*—.-:t" -.-—_.1 _,.'t.-. S
= L et Qﬁ_‘j

i
i
il

O

RS

T(n)=2+T(y/n)+logn and T(1) = 1

et 1= 2™
= T(2") = 2 % T{/2) - log(2™)
L TOHY = D T 2)

lek Sm) = T{2%)
= S(m)=2%xS(m/2)+m
= S(m) =2%(2xS(m/4)+m/2)+m
= S(m)=22xS(m/2?) + m+m

By substituting turther,
= S(m)=2%+«S(m/2") +m4+m+ ...+ m+m

let m=2F= S(m/2*)=85(1)=T(2) =2

= Sm)=24+m(k—-1)4+m
= S(m)=24+m.k

= S(m) =2+ mlogm

= S(m) = O(mlogm)

= S(m) =T(2™) =T (n) = O(lognloglogn)

