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SyllabusSyllabus

Continuous-time signals: Fourier series and Fourier transform
representations, sampling theorem and applications; Discrete-time
signals: discrete-time Fourier transform (DTFT), DFT, FFT, Z-
transform, interpolation of discrete-time signals;

LTI systems: definition and properties, causality, stability, impulse
response, convolution, poles and zeros, parallel and cascade
structure, frequency response, group delay, phase delay, digital
filter design techniques.
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Fourier Series – Observations and LimitationsFourier Series – Observations and Limitations

Real world signals are rarely periodic.

Transient behaviour is common in Electronics and 
Communication Engineering

The discrete spectrum is sparse and cannot carry 
complex information

A different representation is needed for non-periodic 
signals.
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Aperiodic Signal Representation in Frequency DomainAperiodic Signal Representation in Frequency Domain
 A periodic continuous-time signal can be represented in frequency 

domain using Fourier series. 

 But in general, signals are non periodic. 

 To address this, we use Fourier transform
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Fourier TransformFourier Transform
• Transformation is the process in which either a time domain

signal is converted to frequency domain or frequency domain
signal is Converted to time domain so that the signal analysis
becomes easy.

• For any non-periodic signal as

• The discrete spectrum of Fourier Series is converted to
continuous spectrum in Fourier Transform.

• Extension of Fourier Series is Fourier Transform

• Fourier Transform is an extension of F.S to non-periodic signals.
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Fourier Series vs. Fourier IntegralFourier Series vs. Fourier Integral







n

tjn
nectf 0)( 






n

tjn
nectf 0)(

Fourier
Series:

Fourier
Integral:

dtetf
T

c
T

T

tjn
Tn 


2/

2/

0)(
1

dtetf
T

c
T

T

tjn
Tn 


2/

2/

0)(
1

dtetfjF tj




 )()( dtetfjF tj




 )()(




 




 dejFtf tj)(
2

1
)( 


 





 dejFtf tj)(
2

1
)(

Period Function

Discrete Spectra

Non-Period
Function

Continuous Spectra



11

Fourier Transform PairFourier Transform Pair
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Fourier TransformFourier Transform
• Fourier Transform

ି௝ఠ௧

ஶ

ିஶ

௝ఠ௧

ஶ

ିஶ
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௝ଶగ௙௧

ஶ

ିஶ

I.F.T

ି௝ଶగ௙

ஶ

ିஶ

F.T

Proof:
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Example ProblemExample Problem
• If X(t) is a voltage waveform, then what are the units of 

• Sol: ି௝ଶ

ஶ

ିஶ

= volts. sec

• S unit is volts.sec or volts/Hz
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Conditions for existence of Fourier TransformConditions for existence of Fourier Transform

 Conditions for existence of F.T.: (Dirichlet’s Conditions)

1. Signal should have finite number of maxima & minima over finite interval.

2. Signal should have finite number of discontinuities over finite interval.

3. Signal should have absolutely integrable.

ஶ

ିஶ

• Dirichlet’s conditions are sufficient but not necessary.
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Calculate Fourier Transform for a given SignalCalculate Fourier Transform for a given Signal

 Q: Calculate Fourier Transform  for the signal

ି௔௧

 Sol: ஶ

ିஶ

ି௝ఠ௧ ି௔௧

ஶ

ିஶ

ି௝ఠ௧

ି௔௧

ஶ

଴

ି௝ఠ௧ ି(௔ା௝ఠ)௧

ஶ

଴

ି(௔ା௝ఠ)௧

ஶ

଴

ି(௔ା௝ఠ)௧

଴

ஶ ି(௔ା௝ఠ)ஶ ଴
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SolutionSolution

ି(௔ା௝ఠ)௧

଴

ஶ ି(௔ା௝ఠ)ஶ ଴
ି(௔ା௝ఠ)ஶ= ି௔ஶ ି௝ఠஶ

ି௝ஶ

 The cos & sin functions are not defined in the given range.

ି௔ஶ

 At complex exponentials & sinusoidal functions are undefined
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Even symmetry Odd symmetry

Fourier Transform of Right-Sided ExponentialFourier Transform of Right-Sided Exponential
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Properties of Fourier TransformProperties of Fourier Transform
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Properties of Fourier TransformProperties of Fourier Transform
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Properties of Fourier TransformProperties of Fourier Transform
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Properties of Fourier TransformProperties of Fourier Transform
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Proof of Properties of Fourier Transform-LinearityProof of Properties of Fourier Transform-Linearity
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Proof of Properties of Fourier Transform- Time ShiftingProof of Properties of Fourier Transform- Time Shifting
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Proof of Properties of Fourier Transform- Time ScalingProof of Properties of Fourier Transform- Time Scaling
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Proof of Properties of Fourier Transform- DualityProof of Properties of Fourier Transform- Duality
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Proof of Properties of Fourier Transform- Time ReversalProof of Properties of Fourier Transform- Time Reversal
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Proof of Properties of Fourier Transform- Frequency ShiftingProof of Properties of Fourier Transform- Frequency Shifting
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Proof of Properties of Fourier Transform- ModulationProof of Properties of Fourier Transform- Modulation
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Proof of Properties of Fourier Transform- Time DifferentiationProof of Properties of Fourier Transform- Time Differentiation
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Proof of Properties of Fourier Transform- ConvolutionProof of Properties of Fourier Transform- Convolution
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Fourier Transform for Real FunctionsFourier Transform for Real Functions

If f(t) is a real function, and F(j) = FR(j) + jFI(j)

F(j) = F*(j)

dtetfjF tj

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 )()(

dtetfjF tj



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Fourier Transform for Real FunctionsFourier Transform for Real Functions

If f(t) is a real function, and F(j) = FR(j) + jFI(j)

F(j) = F*(j)

FR(j) is even, and FI(j) is odd.

FR(j) = FR(j) FI(j) = FI(j)

Magnitude spectrum |F(j)| is even, and phase spectrum
() is odd.
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Fourier Transform for Real FunctionsFourier Transform for Real Functions

If f(t) is real and even

F(j) is real

If f(t) is real and odd

F(j) is pure imaginary

Pf)

)()( tftf 

Pf)

Even

)()(  jFjF

)(*)(  jFjFReal

)(*)(  jFjF

)()( tftf Odd

)()(  jFjF

)(*)(  jFjFReal

)(*)(  jFjF
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Example Problem -Fourier Transform of  u(-t)  for a>0Example Problem -Fourier Transform of  u(-t)  for a>0

2) ௔௧ u(-t)            a>0

Using time reversal property
ி.்

௔௧
ி.்

ி.்
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Example Problem -Fourier Transform of Example Problem -Fourier Transform of 

3)  

ି௜ఠ௧
஑

ି஑
ି௜ఠ(଴) (since t=0, time shifting property of impulse )

Spectrum of impulse is constant for the frequency
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Example Problem -Fourier Transform of  Example Problem -Fourier Transform of  

Que: ି௔ ௧

Sol: ି௔ ௧

௔௧ t<0,
ି௔௧ t>0,
௔௧ ି௔௧

ଶ ଶ
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Duality PropertyDuality Property
 The Duality Property tells us that if x(t) has a Fourier Transform X(ω)

 If we form a new function of time that has the functional form of
the transform, X(t), it will have a Fourier Transform x(ω) that has the
functional form of the original time function (but is a function of
frequency).
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Duality PropertyDuality Property
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Duality Property based Problem -Fourier Transform of Duality Property based Problem -Fourier Transform of 

𝑡 =
1

𝑎 + 𝑗𝑡
Q: 𝑥 =?

eି௔௧ 𝑢 𝑡 , 𝑎>0 

 ௔ఠ , >0 

Sol:

𝑡 =
1

𝑎 + 𝑗𝑡
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Duality Property based Problem -Fourier Transform of 𝟐 𝟐Duality Property based Problem -Fourier Transform of 𝟐 𝟐

=?
ଶ ଶ

Q:

Sol:
ଶ ଶ

ି௔ ௧ >0
ଶ ଶ

𝑡 = 𝜔

ଶ ଶ
 ି௔ ିఠ , >0 

ଶ ଶ
 ି௔ ఠ , >0 
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Duality Property based Problem- Fourier Transform of Duality Property based Problem- Fourier Transform of 

Q:
଴ =?

Sol:
଴ ଴

଴  ଴

଴= DC Signal  ଴
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Find the in terms of Find the in terms of 
Q:

ii̇i      𝑦 𝑡 = 𝑥 2𝑡 − 3

Sol:

Frequency Shifting property

ି௝ఠబ௧
଴

௝ଶ௧

Y 𝜔 =
1

2
x

−𝜔

2
𝑥 𝑎𝑡 , 𝑎 ≠ 0                        

1

𝑎
x

𝜔

𝑎

Time Scaling property
Sol:

ii̇      𝑦 𝑡 = 𝑥 −2𝑡

𝑥[2 𝑡 −
3

2
]𝑦 𝑡 = 𝑥 2𝑡 − 3 =

𝜔 =
1

2
x

𝜔

2
𝑋ଵ 𝑋ଶ 𝜔 = x 𝜔    eି௝ଵ.ହఠ

Scaling
Shifting

Y 𝜔 =
1

2
x

𝜔

2
    eି௝ .ହఠ

Sol:

଴
ି௝ఠ௧బ

Time Shifting property
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i𝑣 Find its Fourier Transform 

Sol:

𝑡଴ = 2

Scaling
Shifting

𝑥 𝑎𝑡 , 𝑎 ≠ 0                        
1

𝑎
x

𝜔

𝑎
Scaling:

𝑥 𝑡 − 𝑡଴     eି௝ఠ௧బ x 𝜔Time Shifting property:

𝑎 = −2

Y 𝜔 = −
1

2
x

𝜔

2

    e௝ଶఠ

Time

Y 𝜔 =?

𝑦 𝑡 = −𝑥[ 2(𝑡 + 1 ]

Y 𝜔 =
1

2
x

−𝜔

2

    e௝ఠ 𝑤ℎ𝑒𝑟𝑒 𝑡଴ = 1

Sol:
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Q: ) ı̇

ii̇

𝑖𝑓 𝑔 𝑡 = 𝐴𝑦 𝐵𝑡 then calculate 𝐴 and 𝐵

From equation  ı̇

Sol:

Y 𝜔 = x 𝜔 H 𝜔 ii̇i

From equation  ı̇i

𝐺 𝜔 =
ଵ

ଷ
x

ఠ

ଷ
[

ଵ

ଷ
𝐻

௪

ଷ
]

𝐺 𝜔 =
ଵ

ଽ
[x

ఠ

ଷ
𝐻

௪

ଷ
]

𝐺 𝜔 =
ଵ

ଽ
[Y

ఠ

ଷ
] From equation  ii̇i

=
ଵ

ଷ
[

ଵ

ଷ
(Y

ఠ

ଷ
)]

𝑔 𝑡 =
ଵ

ଷ
[𝑦 3𝑡 ] 𝑔 𝑡 = 𝐴𝑦 𝐵𝑡By comparing with

𝐴 =
1

3
𝐵 = 3

=
1

𝑎
𝑦 𝑎𝑡

𝑦 𝑡 = 𝑥 𝑡 ∗ ℎ(𝑡)

Second method:

𝑥 𝑎𝑡 ∗ ℎ(𝑎𝑡)

𝑥 3𝑡 ∗ ℎ(3𝑡) =
ଵ

ଷ
[𝑦 3𝑡 ]

𝑎 = 3

𝑔 𝑡 = 𝐴𝑦 𝐵𝑡By comparing with

𝐴 =
1

3
𝐵 = 3
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Q: =?

Sol:

d𝑥 𝑡

d𝑡
= 2𝛿 𝑡

𝑗𝜔 x 𝜔 = 2

FT

𝑥 𝑡 = sgn 𝑡 x 𝜔 =
2

𝑗𝑤

   
 1 , 0

s g n  0 , 0 2 u 1

1 , 0

t

t t t

t

 
     
   



49

Q:

Sol:

d𝑦 𝑡

d𝑡
= 2𝛿 𝑡

𝑎𝑣𝑔 =
2

2

=1

2𝜋𝛿 𝜔=

𝑗𝜔Y 𝜔 = 2

Y 𝜔 =
2

𝑗𝑤
wrong

Second method:

𝑦 𝑡 = 1 + 𝑥 𝑡

Y 𝜔 = 2𝜋𝛿 𝜔 + x 𝜔

FT

Y 𝜔 = 2𝜋𝛿 𝜔 +
2

𝑗𝑤

Find the Fourier Transform of the following FunctionFind the Fourier Transform of the following Function
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Q:

Sol:

d𝑧 𝑡

d𝑡
= 2𝛿 𝑡

𝑗𝜔Z 𝜔 = 2

Z 𝜔 =
2

𝑗𝑤
wrong

𝑎𝑣𝑔 =
4 + 2

2

= 3

3 ∗ 2𝜋𝛿 𝜔= 6𝜋𝛿 𝜔=

Z 𝜔 = 6𝜋𝛿 𝜔 +
2

𝑗𝑤

Second method:

𝑧 𝑡 = 3 + 𝑥 𝑡

Z 𝜔 = 6𝜋𝛿 𝜔 + x 𝜔

FT

Z 𝜔 = 6𝜋𝛿 𝜔 +
2

𝑗𝑤

Find the Fourier Transform of the following FunctionFind the Fourier Transform of the following Function
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Find the Fourier Transform of the following FunctionFind the Fourier Transform of the following Function
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Fourier Transform of Rectangular or Gate FunctionFourier Transform of Rectangular or Gate Function
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Q:

Sol:

ୢ௫ ௧

ୢ௧
= 𝐴𝛿 𝑡 +

ఛ

ଶ
 −𝐴𝛿 𝑡 −

ఛ

ଶ
 

𝑗𝜔X 𝜔 = 𝐴e௝ఠ
ഓ

మ −𝐴eି௝ఠ
ఛ
ଶ

X 𝜔 =
஺

௝ఠ
[ eି௝ఠ

ഓ

మ ]e௝ఠ
ఛ
ଶ −

஺

௝ఠ
X 2𝑗 X= sin

𝜔𝜏

2

2𝐴

𝜔

=

X [
ୱ୧୬

ഘഓ

మ
ഘഓ

మ

] X
𝜔𝜏

2=

𝐴𝜏 X sa
𝜔𝜏

2

Find the Fourier Transform of the following FunctionFind the Fourier Transform of the following Function
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Q:

Sol:

= 𝐴𝜏 X sa
𝜔𝜏

2
X 𝜔

= 5 X 4 X sa
𝜔4

2

X 𝜔 = 20 sa(2𝜔)

Q:

Sol:
𝑦 𝑡 = 𝑥 𝑡 + 6

Y 𝜔 = X 𝜔    e௝ఠ଺

= 20 sa(2𝜔)    e௝ఠ଺Y 𝜔

Find the Fourier Transform of the following FunctionsFind the Fourier Transform of the following Functions
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Q:

Sol:

40 (4 ) 12 (3 )

ଵ ଶ

ଵ ଶ

ଵ + ଶ

40 (4 ) + 12 (3 )

Find the Fourier Transform of the following FunctionFind the Fourier Transform of the following Function
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Q: 𝟎 ( ) Draw FT 

Sol:

m X

m X

m
଴ ( )

m ଴
ఛ

ଶ

଴ ଴ ଴

଴ ( )
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Q:

Sol:

( )

Compare with ଴ ( )

଴=3 =4

బ =

Find the Fourier Transform of the following FunctionFind the Fourier Transform of the following Function
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Fourier Transform of a GaussianFourier Transform of a Gaussian
x(t)  eat2

  —  A Gaussian, important in 

                           probability, optics, etc.

(Pulse width in t)•(Pulse width in )
∆t•∆ ~ (1/a1/2)•(a1/2) = 1
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Summary of Fourier Transform Properties Summary of Fourier Transform Properties 
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Summary of Fourier Transform Properties Summary of Fourier Transform Properties 
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The Fourier transform of Q:
𝟏 + is  

(where ଵ the differentiation of an impulse)

a) ି௝
ഘ

మ b) ି௝ఠ c)  ି௝
యഘ

మ d) ି௝
మഘ

య

Sol:
ଵ =

= = 2 X

= 

ଵ ) = 

) = ି௝
యഘ

మ
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Problem and SolutionProblem and Solution

The Fourier transform of [ ଴ is   

(a)|a| t0 (b) 1/|a| t0 

(b) (ω-ω0 ) t0 (d) t0 

Sol: δ(
t−t0 )  =  |a|. t0   
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ProblemProblem
Match the following

List I (function in time-domain)
A. Delta function
B. Gate function
C. Normalized Gaussian function
D. Sinusoidal function
List II (F.T. of the function)
1. Delta function
2. Gaussian function
3. Constant function
4. Sampling function

A       B     C     D
(a) 1       2      4     3
(b) 3       4      2     1
(c) 1       2      2     3
(d) 3         4      4     1
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Solution Solution 

Sol:  Function In Time F.T. of Function

Delta function δ(t) constant function
→(3)

Gate function π(t) sampling function
→(4)

Normalized Gaussian Function  Gaussian function → (2)

Sinusoidal function Delta function→(1)



66

ProblemProblem
Match the following

List I (signals)

(A)g(t-2)
(B)t g(t)
(C)g(-t)
(D)G(3t + 1)

List II (Transform)

(1) jd/dω G(ω)
(2) 1/3 G(ω/3) ା௝ఠ/ଷ

ି௝ଶఠG(ω)
(4)    G(-ω)
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SolutionSolution
4. Ans: (b)
Sol:  Signals                                 F.T

g(t-2)                                        G(ω) ି௝ଶఠ →(3)

t g(t)                                        Frequency differentiation 

j
ௗ

ௗఠ
G( →(1)

g(-t)                                         Time reversal property

G(-ω) →(4)
G(3t+1)                                       Scaling & shifting property

ଵ

ଷ
G(

ఠ

ଷ
) 

శೕ

య →(2)
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Problem Problem 

Let   x(t)↔X(ω) =         1,  |ω|<1
0,  |ω|>1

Consider y(t) = 
ଶ

ଶ
.  Then value of |y(t)|2

(a) (b) 

(c) (d) π2 



69

SolutionSolution

Sol:  Y(ω) = (jω)2.X(ω)

|y(t)|2 
 ஶ

ିஶ
dt  = 

ଵ

ଶగ
|Y(ω|2 

ஶ

ିஶ

= 
ଵ

ଶగ
ω4 

ଵ

ିଵ

ଵ

ଶగ

ఠఱ

ହ ିଵ
ଵ

= 
ଵ

ଵ଴
(2)

=
ଵ

ହగ
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ProblemProblem
A Signal x(t) = 8 – 8cos2 (6 is passed through an ideal LPF.
The filter blocks frequencies above 5Hz. Find the output?
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SolutionSolution

x(t) = 8-8cos2 (6πt)

= 8 – 8[
ଵାୡ୭ୱ (ଵଶగ௧)

ଶ
]                                 

x(t) = 8 – 4 – 4cos(12πt)

x(t) = 4 – 4cos(12πt)

The frequencies of x(t) are 0,6Hz                           

6Hz frequency is not allowed only ‘0 Hz’ is allowed y(t) = 4
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ProblemProblem

The transfer function of a system is given by 

H(ω) = 2 

Find the output if input is x(t) = 
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SolutionSolution

Sol:  H(ω) = ( )2 ( + 2)2 

x(t) = 

X(ω) = 

Y( ) = H( ).X( =  (2+ )2 .

Y( (2+j )2 y(t) = 2t
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ProblemProblem

Find the frequency and impulse response of a filter whose
input – output relation is described by the following equation

Y(t) = x(t)- 2 ) u(t- ) dλ
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SolutionSolution

Sol: y(t) = x(t) - 2

y(t) = x(t) – 2[y(t)* u(t)]

Y(ω) = X(ω) – 2[ ]

Y(ω)[1+ ] = X(

H(ω) = = 

H(ω) = 1 -

h(t) = δ(t) - 2 u(t)
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ProblemProblem

The output and input of a causal LTI system are related by the
Differential equation

d2 y(t)
dt2 +

6dy(t) 
dt + 8y(t) = 2x(t)

(a) Find the Impulse Response
(b) Find the response if x(t) = t
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SolutionSolution
Sol:   a) 

d2y(t)  
dt2 + 

6 dy(t) 
dt y(t) = 2x(t)  

(jω)2  Y(ω) +  6jωY(ω +8 Y(ω) = 2 X(ω)

H(ω)  =  
ଶ

(jω)2 ା଺௝௪ା
=  

ଶ

(௝ఠାଶ)(௝ఠାସ)

H(ω) =   
஺

(௝னାଶ)
+ 

஻

(௝ఠାସ
=  

ଵ

(௝ఠାଶ)

ଵ

௝ఠାସ

h(t) = ( ିଶ௧- ିସ௧)u(t)

b)   x(t) = t ିଶ௧ X(ω) = 
ଵ

(2+jω)2 

Y(ω) = H(ω).X(ω) =  
ଶ

(jω+2)3(jω+4) 

Y(ω) = 
ଵ/ସ

(jω+2) -
ଵ/ଶ

(jω+2)2 +  
ଵ/ଶ

(jω+2)3 -
ଵ/ସ

4 + jω 

y(t) = ( 
ଵ

ସ
ିଶ௧-

௧

ଶ
ିଶ௧ + t2 ିଶ௧ ଵ

ସ
ିସ௧ )u(t)
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ProblemProblem
A LTI continuous–time system has frequency response H(
know that the input x(t) = 1+4cos(2 +8sin(3 900 ) produces
the response

y(t) = 2 – 2 sin(2 ).  Then H( at is 

(a)0                                            (b) 1
(c) (1/2) (d) None of these      
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SolutionSolution
Sol:  If input x(t) = cosω0t
Frequency response H(ω), then output

y(t) =     |H(ω0 )|.cos(ω0 t +  ω0 ))

So H(ω) |ω = 3 = 0.    Because, there is no term of 
‘3 y(t)
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ProblemProblem
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SolutionSolution
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Problem and SolutionProblem and Solution
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