
GATE ONLINE CLASSES

ON

DATA STRUCTURES

Presented by

Chandra Sekhar Sanaboina

Assistant Professor

Department of CSE

University College of Engineering Kakinada

Jawaharlal Nehru Technological University Kakinada

GATE ONLINE CLASSES

Day – 10 Lecture Notes

on

DATA STRUCTURES

GATE ONLINE CLASSES

GRAPH REPRESENTATIONS

GATE ONLINE CLASSES

 Adjacency Matrix

 Adjacency Lists

GATE ONLINE CLASSES

Graph Representations

ADJACENCY MATRIX

GATE ONLINE CLASSES

 Let G=(V,E) be a graph with n vertices.

 The adjacency matrix of G is a two-dimensional n by n array, say adj_mat

 If the edge (vi, vj) is in E(G), adj_mat[i][j]=1

 If there is no such edge in E(G), adj_mat[i][j]=0

 The adjacency matrix for an undirected graph is symmetric

 The adjacency matrix for a digraph need not be symmetric

GATE ONLINE CLASSES

Adjacency Matrix

0

1

1

1

1

0

1

1

1

1

0

1

1

1

1

0

0

1

0

1

0

0

0

1

0

0

1

1

0

0

0

0

0

1

0

0

1

0

0

0

0

1

0

0

1

0

0

0

0

0

1

1

0

0

0

0

0

0

0

0

0

0

1

0

0

0

0

0

0

1

0

1

0

0

0

0

0

0

1

0

1

0

0

0

0

0

0

1

0

G
1

G2

G4

0

1 2

3

1

0

2

3

4

5

6

7

Symmetric
GATE ONLINE CLASSES

0

1

2

Examples on Adjacency Matrix

 From the adjacency matrix, to determine the connection of vertices is
easy

 For undirected graph, the degree of a vertex is sum of columns

 For a digraph, the row sum is the out-degree, while the column sum
is the in-degree

adj mat i j
j

n

_ [][]

0

1

ind vi A j i
j

n

() [,]

0

1 outd vi A i j
j

n

() [,]

0

1

GATE ONLINE CLASSES

Merits of Adjacency Matrix

FEATURES OF ADJACENCY MATRIX

 Storage complexity: O(|V|2)

 Undirected graph: symmetric along main diagonal

 AT transpose of A

 Undirected: A=AT

 Directed Graph:

 In-degree of X: Sum along column X O(|V|)

 Out-degree of X: Sum along row X O(|V|)

 Very simple, good for small graphs

GATE ONLINE CLASSES

DEMERITS OF ADJACENCY MATRIX

 Many graphs in practical problems are sparse

 Not many edges --- not all pairs x,y have edge xy

 Matrix representation demands too much memory

 We want to reduce memory footprint

 Use sparse matrix techniques

GATE ONLINE CLASSES

ADJACENCY LISTS

GATE ONLINE CLASSES

0

1

2
3

0
1

2

0

1

2

3
4

5

6
7

1 2 3
0 2

0 1 3

0 2
G1

1
0 2

G3

1 2
0 3

0 3

1 2

5

4 6

5 7
6 G4

0

1 2 3

0

1

2

1
0

2
3

4
5

6

7

An undirected graph with n vertices and e edges ==> n head nodes and 2e list nodes

GATE ONLINE CLASSES

Adjacency List

INTERESTING OPERATIONS

degree of a vertex in an undirected graph

–# of nodes in adjacency list

out-degree of a vertex in a directed graph

–# of nodes in its adjacency list

in-degree of a vertex in a directed graph

–traverse the whole data structure

GATE ONLINE CLASSES

FEATURES OF ADJACENCY LIST FEATURES

 Storage Complexity:

 O(|V| + |E|)

 In undirected graph: O(|V|+2*|E|) = O(|V|+|E|)

 Degree of node X:

 Out degree: Length of Adj[X] O(|V|) calculation

 In degree: Check all Adj[] lists O(|V|+|E|)

GATE ONLINE CLASSES

GRAPH TRAVERSALS

GATE ONLINE CLASSES

 A traversal (search):
 An algorithm for systematically exploring a graph
 Visiting (all) vertices
 Until finding a goal vertex or until no more vertices

 Two types of Graph Traversal Techniques

– Depth First Search (DFS)
preorder tree traversal

– Breadth First Search (BFS)
level order tree traversal

GATE ONLINE CLASSES

Graph Traversal / Grah Searching Techniques

BREADTH FIRST SEARCH

GATE ONLINE CLASSES

BREADTH-FIRST SEARCH

 One of the simplest algorithms

 Also one of the most important

 It forms the basis for MANY graph algorithms

GATE ONLINE CLASSES

BFS: LEVEL-BY-LEVEL TRAVERSAL

 Given a starting vertex s

 Visit all vertices at increasing distance from s

 Visit all vertices at distance k from s

 Then visit all vertices at distance k+1 from s

 Then ….

GATE ONLINE CLASSES

APPLICATIONS OF BREADTH FIRST TRAVERSAL

 Shortest Path and Minimum Spanning Tree for unweighted graph

 Peer to Peer Networks

 Crawlers in Search Engines

 Social Networking Websites

 GPS Navigation systems

 Broadcasting in Network

 In Garbage Collection

 Cycle detection in undirected graph

 To test if a graph is Bipartite

 Path Finding

 Finding all nodes within one connected component

 Prim’s Minimum Spanning Tree

 Dijkstra’s Single Source Shortest Path

GATE ONLINE CLASSES

BFS IN A BINARY TREE

5

2

1 3

8

6 10

7 9
5 2 8 1 3 6 10 7 9

GATE ONLINE CLASSES

ALGORITHM FOR BFS USING QUEUES

1. unmark all vertices in G

2. q new queue

3. mark s

4. enqueue(q, s)

5. while (not empty(q))

6. curr dequeue(q)

7. visit curr // e.g., print its data

8. for each edge <curr, V>

9. if V is unmarked

10. mark V

11. enqueue(q, V)

GATE ONLINE CLASSES

Start with A. Put in the queue (marked red)

A

B

G C

E

D

F Queue: A

GATE ONLINE CLASSES

BFS Using Queues

When we go to A, we put B and E in the queue

A

B

G C

E

D

F
Queue: A B E

GATE ONLINE CLASSES

BFS Using Queues

When we go to B, we put G and C in the queue

A

B

G C

E

D

F
Queue: A B E C G

GATE ONLINE CLASSES

BFS Using Queues

When we go to E, we put D and F in the queue

A

B

G C

E

D

F
Queue: A B E C G D F

GATE ONLINE CLASSES

BFS Using Queues

A

B

G C

E

D

F
Queue: A B E C G D F

GATE ONLINE CLASSES

BFS Using Queues

A

B

G C

E

D

F Queue: A B E C G D F

GATE ONLINE CLASSES

BFS Using Queues

A

B

G C

E

D

F Queue: A B E C G D F

GATE ONLINE CLASSES

BFS Using Queues

A

B

G C

E

D

F Queue: A B E C G D F

GATE ONLINE CLASSES

BFS Using Queues

FEATURES OF BFS

 Complexity: O(|V| + |E|)

 All vertices put on queue exactly once

 For each vertex on queue, we expand its edges

 In other words, we traverse all edges once

 BFS finds shortest path from s to each vertex

 Shortest in terms of number of edges

GATE ONLINE CLASSES

DEPTH FIRST SEARCH

GATE ONLINE CLASSES

DEPTH-FIRST SEARCH

 Again, a simple and powerful algorithm

 Given a starting vertex s

 Pick an adjacent vertex, visit it.

 Then visit one of its adjacent vertices

 …..

 Until impossible, then backtrack, visit another

GATE ONLINE CLASSES

APPLICATIONS OF DEPTH FIRST SEARCH

 Minimum spanning tree for undirected graphs

 Detecting cycle in a graph

 Path Finding

 Topological Sorting

 To test if a graph is bipartite

 Finding Strongly Connected Components of a graph

 Solving puzzles with only one solution

GATE ONLINE CLASSES

 Start with A.

 Mark A and Push A on to stack

Next Step:

 Pop A and output

 Push the Adjacent Vertices of A (B, E) into Stack

A

B

G C

E

D

F
Stack: A

Output: Nil

GATE ONLINE CLASSES

DFS Using Stacks

Next Step:

 Pick E (Top)

 Pop E and place it in output by pushing adjacent vertices of E (D, F) on
to the stack

A

B

G C

E

D

F

Stack: B E

Output: A

GATE ONLINE CLASSES

DFS Using Stacks

A

B

G C

E

D

F

GATE ONLINE CLASSES

DFS Using Stacks

Next Step:

 Pick F (Top)

 Pop F and place it in output by pushing the unvisited adjacent vertices
of F (NIL) on to the stack

Stack: B D F

Output: AE

A

B

G C

E

D

F

GATE ONLINE CLASSES

DFS Using Stacks

Next Step:

 Pick D (Top)

 Pop D and place it in output by pushing the unvisited adjacent vertices
of D (NIL) on to the stack

Stack: B D

Output: AEF

A

B

G C

E

D

F

GATE ONLINE CLASSES

DFS Using Stacks

Next Step:

 Pick B (Top)

 Pop B and place it in output by pushing the unvisited adjacent vertices
of B (C, G) on to the stack

Stack: B

Output: AEFD

A

B

G C

E

D

F

GATE ONLINE CLASSES

DFS Using Stacks

Next Step:

 Pick G (Top)

 Pop G and place it in output by pushing the unvisited adjacent vertices
of G (NIL) on to the stack

Stack: CG

Output: AEFDB

A

B

G C

E

D

F

GATE ONLINE CLASSES

DFS Using Stacks

Next Step:

 Pick C (Top)

 Pop C and place it in output by pushing the unvisited adjacent vertices
of C (NIL) on to the stack

Stack: C

Output: AEFDBG

A

B

G C

E

D

F

GATE ONLINE CLASSES

DFS Using Stacks

Next Step:

 Stack Empty -> No elements to process -> Final Outpu

Stack: EMPTY

Output: AEFDBGC

INTERESTING FEATURES OF DFS

 Complexity: O(|V| + |E|

GATE ONLINE CLASSES

Depth First Search: v0, v1, v3, v7, v4, v5, v2, v6

Breadth First Search: v0, v1, v2, v3, v4, v5, v6, v7

GATE ONLINE CLASSES

DFS and BFS of a graph from given Linked List

PART – 9

HASHING

 Agenda:

 Introduction to Hashing

 Steps Involved in Hashing

 Components of Hashing

 Hash Functions

 Requirements for Good Hash Functions

 Types of Hash Functions

 Need for Good Hash Function

 Hash Tables

 Collisions

 Collision Resolution Techniques

 Linear Probing

 Quadratic Probing

 Separate Chaining

GATE ONLINE CLASSES

Hashing

GATE ONLINE CLASSES

INTRODUCTION TO HASHING

 Hashing

 Hashing is a technique used for storing and retrieving information as quickly as
possible.

 Used to perform Optimal Searches

 Hashing is a technique that is used to uniquely identify a specific object from a
group of similar objects

 E.g: Student Registration Number in Universities, Books in Libraries etc.,

 An object is assigned a key to it to make searching easy

 To store the key/value pair, you can use a simple array like a data structure where
keys (integers) can be used directly as an index to store values

 Keys are large and cannot be used directly as an index you should use hashing

 GATE ONLINE CLASSES

Steps Involved in Hasing

GATE ONLINE CLASSES

STEPS INVOLVED IN HASHING

 Hashing is implemented in two steps:

 Step 1:

 An element is converted into an integer by using a hash function. This integer value
can be used to calculate the index which is used to store the original element

 hash = hashfunc(key)

 Step 2:

 The element is stored in the hash table where it can be quickly retrieved using
hashed key

 index = hash % array_size

GATE ONLINE CLASSES

Components of Hashing

GATE ONLINE CLASSES

COMPONENTS OF HASHING

 Hashing has four key components

 Hash Functions

 Hash Table

 Collisions

 Collision Resolution Techniques

GATE ONLINE CLASSES

Hash Functions

GATE ONLINE CLASSES

HASH FUNCTION

 Hash Function

 The hash function is used to transform the key into the index

 A hash function should map each possible key to a unique slot index (Which
is impossible in real practice)

 The values returned by a hash function are called hash values, hash codes,
hash sums, or simply hashes

GATE ONLINE CLASSES

Requirements for Good Hash

Function

GATE ONLINE CLASSES

REQUIREMENTS OF GOOD HASH FUNCTION

 Basic Requirements of Good Hash Function:

 Easy to compute:

 It should be easy to compute and must not become an algorithm in itself

 Uniform distribution:

 It should provide a uniform distribution across the hash table and should not result in
clustering

 Less collisions:

 Collisions occur when pairs of elements are mapped to the same hash value. These
should be avoided

GATE ONLINE CLASSES

Types of Hash Functions

GATE ONLINE CLASSES

TYPES OF HASH FUNCTIONS

 Division –
 easiest method to create a hash function

 the first order of business for a hash function is to compute an integer value

 if we expect the hash function to produce a valid index for our chosen table
size, that integer will probably be out of range and that is easily remedied by
modding the integer by the table size

 h(k) = k mod n

 it is better if the table size is a prime, or at least has no small prime factors as
that makes sure the keys are distributed with more uniformity

 k=1501 n=10 h(1501) = 1501 mod 10 = 1

 Disadvantage:

 Consecutive keys map to consecutive hash values – which leads to poor performance

GATE ONLINE CLASSES

TYPES OF HASH FUNCTIONS CONTD…

 Folding –
 begins by dividing the item into equal-size pieces (the last piece

may not be of equal size). These pieces are then added together to
give the resulting hash value

 portions of the key are often recombined, or folded together

 shift folding: 123-45-6789 -> 123 + 456 + 789

 boundary folding: 123-45-6789 -> 123 + 654 + 789

 can be efficiently performed using bitwise operations

GATE ONLINE CLASSES

TYPES OF HASH FUNCTIONS CONTD…

 Mid-Square Function –

 square the key, then use the middle part as the result

 e.g., 3121 -> 9740641 -> 406 (with a table size of 1000)

 a string would first be transformed into a number using ASCII values

GATE ONLINE CLASSES

TYPES OF HASH FUNCTIONS CONTD…

 Extraction –

 use only part of the key to compute the result

 The ISBN starting digits are the same for a publisher, so they should be exclude
if the hash table is for only one publisher.

GATE ONLINE CLASSES

TYPES OF HASH FUNCTIONS CONTD…

 Radix Transformation –

 change the base-of-representation of the numeric key, mod by table size

 Example:

 Key = 345, change to base 9 = 423 % TSize

GATE ONLINE CLASSES

Need for Good Hash Function

GATE ONLINE CLASSES

NEED FOR GOOD HASH FUNCTION

 Assume that you have to store strings in the hash table by using the hashing
technique {“abcdef”, “bcdefa”, “cdefab” , “defabc” }

 Hash Function1: h1 = The index for a specific string will be equal to the sum of
the ASCII values of the characters modulo 599

 The hash function will compute the same index for all the strings

GATE ONLINE CLASSES

NEED FOR GOOD HASH FUNCTION

 Hash Function2: h2 = The index for a specific string will be equal to sum of ASCII
values of characters multiplied by their respective order in the string after which it
is modulo with 2069 (prime number)

GATE ONLINE CLASSES

NEED FOR GOOD HASH FUNCTION

 String Hash function Index
abcdef (971 + 982 + 993 + 1004 + 1015 + 1026)%2069 38
bcdefa (981 + 992 + 1003 + 1014 + 1025 + 976)%2069 23
cdefab (991 + 1002 + 1013 + 1024 + 975 + 986)%2069 14
defabc (1001 + 1012 + 1023 + 974 + 985 + 996)%2069 11

GATE ONLINE CLASSES

Hash Tables

GATE ONLINE CLASSES

HASH TABLES

 Hash table

 A hash table is a data structure that is used to store keys/value pairs

 It uses a hash function to compute an index into an array in which an
element will be inserted or searched

GATE ONLINE CLASSES

HASH TABLES

 Provides virtually direct access to objects based on a key (a unique String or
Integer)

 key could be your SID, your telephone number, social security number,
account number, …

 Must have unique keys

 Each key is associated with–mapped to–a value

GATE ONLINE CLASSES

HASH TABLES

 Load Factor of the Hash Table:

 It is the denoted by the symbol λ

 λ = (number of items in the table) / tablesize

 Example: Assume that the tablesize is 10 and it consists of 6 items,
then the load factor of the table is λ = 6/10 = 0.6

GATE ONLINE CLASSES

Collisons

GATE ONLINE CLASSES

COLLISIONS

 A good hash method

 executes quickly

 distributes keys equitably

 Has less collisions

GATE ONLINE CLASSES

COLLISIONS CONTD

 But you still have to handle collisions when two keys have the same hash value

 the hash method is not guaranteed to return a unique integer for each key

 example: simple hash method with "baab" and "abba“

 There are several ways to handle collisions

 Linear Probing

 Quadratic Probing

 Separate Chaining

GATE ONLINE CLASSES

Collision Handling Mechanisms

Or

Collision Resolution Techniques

GATE ONLINE CLASSES

COLLISION RESOLUTION

 It is the systematic method for placing the collided item in the
hash table

 Two methods of Collision Resolution

 Open Addressing

 Linear Probing

 Quadratic Probing

 Chaining

GATE ONLINE CLASSES

Linear Probing

GATE ONLINE CLASSES

LINEAR PROBING

 Linear Probing:

 search sequentially for an unoccupied position

 uses a wraparound (circular) array

GATE ONLINE CLASSES

81
82
83
84
85
86

308

A HASH TABLE AFTER THREE INSERTIONS

"abba"

Keys

80
...
0

insert objects with
these three keys:

"abba"
"abcd"
"abce"

...

"abcd"

"abce"

GATE ONLINE CLASSES

COLLISION OCCURS WHILE INSERTING “baab"

can't insert "baab"
where it hashes to
same slot as "abba"

Linear probe
forward by 1,
inserting it
at the next
available slot

"baab"

Try [81]

Put in [82] 81
82
83
84
85
86

308

"abba"

80
...
0

...

"abcd"

"abce"

"baab"

GATE ONLINE CLASSES

WRAP AROUND WHEN COLLISION OCCURS AT END

Insert "KLMP" and
"IKLT"
both of which havee a
hash value of 308

81
82
83
84
85
86

308

"abba"

80
...
0

...

"abcd"

"abce"

"baab"

"KLMP"

"IKLT"

GATE ONLINE CLASSES

FIND OBJECT WITH KEY “baab"

81
82
83
84
85
86

308

"abba"

80
...
0

...

"abcd"

"abce"

"baab"

"KLMP"

"IKLT"

"baab" still hashes to
81, but since [81] is
occupied, linear
probe to [82]

At this point, you
could return a
reference or remove
baab

GATE ONLINE CLASSES

Black areas represent slots in use; white areas are empty slots

 Used slots tend to cluster with linear probing

LINEAR PROBING HAS CLUSTERING PROBLEM

GATE ONLINE CLASSES

Quadratic Probing

GATE ONLINE CLASSES

QUADRATIC PROBING

 Quadratic probing eliminates the primary clustering problem

 Assume hVal is the value of the hash function

 Instead of linear probing which searches for an open slot in a linear fashion
like this

hVal + 1, hVal + 2, hVal + 3, hVal + 4, ...

 add index values in increments of powers of 2

hVal + 1*1, hVal + 2*2, hVal + 3*3, hVal + 4*4, ...

GATE ONLINE CLASSES

DOES IT WORK?

 Quadratic probing works well if

 Table size is prime

 studies show the prime numbered table size removes some of the non-
randomness of hash functions

GATE ONLINE CLASSES

Separate Chaining

GATE ONLINE CLASSES

SEPARATE CHAINING

 Separate Chaining is an alternative to probing

 How?

 Maintain an array of lists

 Hash to the same place always and insert at the beginning (or end) of the linked list.

GATE ONLINE CLASSES

“AB” 9 “BA” 9

0

1

2

 Each array element is a List

ARRAY OF LINKEDLISTS DATA STRUCTURE

GATE ONLINE CLASSES

SEPARATE CHAINING

GATE ONLINE CLASSES

HASHING SUMMARY

 Hashing involves transforming a key to produce an integer in a fixed range
(0..TABLE_SIZE-1)

 The function that transforms the key into an array index is known as the hash function

 When two data values produce the same hash value, you get a collision

 Collision resolution may be done by searching for the next open slot at or after the
position given by the hash function, wrapping around to the front of the table when
you run off the end (known as linear probing)

GATE ONLINE CLASSES

HASHING SUMMARY

 Another common collision resolution technique is to store the table as an array of
linked lists and to keep at each array index the list of values that yield that hash
value known as separate chaining

 Most often the data stored in a hash table includes both a key field and a data field
(e.g., social security number and student information).

 The key field determines where to store the value

 A lookup on that key will then return the value associated with that key (if it is
mapped in the table)

GATE ONLINE CLASSES

GATE ONLINE CLASSES

End of

Day – 10 Lecture Notes

on

DATA STRUCTURES

GATE ONLINE CLASSES

